
A Study on Network Performance Metrics and their Composition 
 

Andreas Hanemann1, Athanassios Liakopoulos2, Maurizio Molina3, D. Martin Swany4 
 

1 German Research Network, c/o Leibniz Supercomputing Center, Barer Str. 21, D-80333 Munich, Germany 
2 Greek Research & Technology Network S.A., 56 Mesogion Ave., 11574, Athens, Greece 

3 DANTE, 126-130 Hills Road, Cambridge CB2 1PG, United Kingdom 
4 Dep. of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA 

 
 

Email: hanemann@dfn.de, aliako@grnet.gr, Maurizio.molina@dante.org.uk, swany@cis.udel.edu 
 
 
Keywords: network performance, network monitoring, network metrics, multi-domain, post processing 
 
Abstract: Research backbone networks like GÉANT2 and the National Research and Education Networks are 
used by a variety of scientists and research projects. These users and the network engineers operating the 
networks would like to get access to network performance metrics to optimise their use of the network and to 
troubleshoot performance degradations, when they happen. A variety of tools for performing network 
measurements already exist, and the perfSONAR architecture developed within the Joint Research Activity 1 
(JRA1) of GÉANT2 aims at integrating them in a coherent framework. However, a harmonised definition of 
which metrics are mostly interesting and how measurements must be carried out is still lacking. In this paper we 
suggest the set of elementary metrics which are more relevant, along with indication about how to post process 
(or “transform”, or “compose”) them in order to obtain derived summary values that can quickly and intuitively 
give an indication of network performance. Methods to perform the composition are presented, together with 
constraints which have to be taken into account to get accurate results. In particular, delay measurements are the 
most delicate ones to compose. We carried out a series of experiments for proofing the validity of composition of 
delay metrics, and we briefly present some preliminary results. 
 

1 Introduction 

Many modern networking applications can benefit from improved Quality of Service (QoS) supported across 
multiple administrative domains. GÉANT2, the Gigabit core pan-European research network, for example, 
supports the Premium IP service to the European National Research & Education Networks (NRENs). 
Provisioning of end to end advanced transport services requires methods for verifying the established Service 
Level Agreements (SLAs) between the service provider and its customers. Even in a well engineered network, 
however, occasional equipment fault or misconfiguration can cause severe service performance degradation. 
Therefore, GÉANT2 is committed to constantly assess the QoS in the network and verify that the performance 
guarantees agreed upon with the NRENs are met. Moreover, end users should be able to access the measurement 
infrastructure or the archived measurement data, even if with lower privileges than the GÉANT2/NRENs 
Network Engineers. This requires the deployment of an appropriate monitoring infrastructure in the 
GÉANT2/NRENs networks, and coordination in the performance metric collection and exchange. 
The Joint Research Activity 1 (JRA1) [1] in the GÉANT2 project, in cooperation with the Internet2’s End-to-
End piPEs [2] initiative and the US Department of Energy’s ESnet [3], defined a general framework for a multi-
domain network measurement infrastructure. Currently, a prototype implementation, called “Performance 
focused Service Oriented Network monitoring Architecture” (perfSONAR), is under development and testing. In 
this context, it is fundamental to harmonise the type of collected measurements so that they are useful also in a 
multi-domain context, and to define common procedures to post-process (or “compose”) them.  
This paper presents the work in progress in GN2-JRA1 related with network performance metric composition. In 
section 2, a brief description of the JRA1 monitoring architecture (perfSONAR) is provided. Section 3 presents 
our selection of the most significant metrics and their classification into categories. Section 4, explains the main 
reasons for post processing monitoring data. This operation is called “metric composition”. Section 5 presents, as 
an example, experimental results of a composition of One Way Delay data. Finally, section 6 references related 
work on metric composition and our conclusions as well as future plans are discussed in the last section. 
 

2 GN2-JRA1 Monitoring Architecture (perfSONAR) 

The perfSONAR system is a framework that enables network performance information to be gathered and 
exchanged in a multi-domain, federated manner. The goal of perfSONAR is to enable ubiquitous gathering and 



sharing of this performance information in order to ease management of advanced networks, facilitate cross-
domain troubleshooting and to allow next-generation applications to tailor their execution to the state of the 
network.  This system has been designed to accommodate easy extensibility for new network metrics and to 
facilitate the automatic processing of these metrics as much as possible. 
The perfSONAR architecture is composed of three different layers, as shown in Figure 1. The Measurement 
Point Layer is responsible for performing active or passive measurement tests via multiple Measurement Points 
(MPs), i.e. existing network monitoring tools. The MP is wrapped into a higher level abstraction called 
Measurement Point Service, belonging to the Service Layer, which hides the implementation details of the MP. 
The Service Layer is composed of multiple services that control the monitoring infrastructure, receive, store and 
exchange measurement and network topology data. Services interact with each other without human intervention 
(e.g. measurement data retrieved by a Measurement Point Service is fed into a Measurement Archive Service 
and manipulated by a Transformation Service) and with the upper User Interface Layer. The end users interact 
via the visualisation tools at the User Interface Layer only. 
The whole architecture is based on Web Services (WS) technology, which allows defining the interaction 
between services through well defined, language independent interfaces. Web Services are closely tied to the 
eXtensible Markup Language (XML). perfSONAR uses and extends a schema defined by the Global Grid 
Forum’s Network Measurement Working Group [9]. This schema defines an extensible message and storage 
format for network measurements. The perfSONAR approach removes any dependencies from the lower 
networking technologies and permits new services to be easily added. The following services have been defined 
in the perfSONAR framework: 

• Measurement Point (MP) service: performs the measurements and forwards data to other services 
• Measurement Archive (MA) service: stores the measurement data 
• Lookup service (LS): registers information regarding active services and their capabilities 
• Topology service (TS): stores network topology information 
• Authentication service (AS): provides authentication and authorisation services required in users - 

services interactions 
• Transformation service (TrS): performs manipulation (aggregation, statistics) on available data sets 
• Resource Protector (RP) service: arbitrates the use of limited measurement resources 

Currently, perfSONAR is focusing on IP level metrics, as this is the main service provided by the NRENs. The 
framework has been build flexible enough to cater for new metrics and for different type of technologies.  
In order for the described architecture to be truly useful in a multi-domain environment, there is the need to 
harmonise the type of collected measurements and the procedures for their composition in the TrS. This is the 
main focus of the study described in this paper. A more extended description is available in [5]. 
 

 
Figure 1 – The PerfSONAR Service Oriented Architecture for multi-domain network monitoring 

 
 



3 Network Metric Selection and Classification 

We surveyed several network metrics, both the ones defined in standards ([6], [11]) and non-standard ones 
which are commonly collected by network operation centres. Furthermore, we analysed the replies to a 
questionnaire circulated by the NRENs among potential users of perfSONAR in the first phase of the JRA1 
project. As a result, we selected the metrics of greatest relevance for network performance, i.e. useful for 
assessing the service level offered to IP traffic forwarded though a network. They can be divided into four main 
groups: 

• availability 
• loss & error 
• delay 
• bandwidth 
 

Availability metrics assess how robust the network is, i.e. the percentage of time the network is running without 
any problem impacting the availability of services. It can also be referred to specific network elements (e.g. a 
link or a node), and in that case it will measure the percentage of time they are running without failure. Loss and 
error metrics are indicative of the network congestion conditions and/or transmission errors and/or equipment 
malfunctioning. They usually measure the fraction of packets lost in a network due to buffer overflows or other 
reasons, or the fraction of errored bits or packets. Delay metrics also assess the network congestion conditions or 
effect of routing changes. They measure the delay (One Way Delay-OWD and Round Trip Time-RTT) and 
Delay Variation (IPDV, or “jitter”) of the packets transferred by a network. Finally, bandwidth metrics assess the 
amount of data that a user can transfer through the network in a time unit, both dependent and independent from 
the existing network traffic. 
Besides of the performance-related metrics, several additional metrics are often useful to explain the causes of 
performance degradations. Examples are the CPU load, memory consumption, or even chassis temperature of 
network devices. The monitoring infrastructure may observe these additional metrics to ease troubleshooting 
when their values indicate degradation in service levels, or to prevent degradation by upgrading equipments 
before they reach critical conditions. These metrics are further divided to device specific, flow monitoring and 
routing metric groups. 
For each metric relevant in the context of perfSONAR, in [5] a definition was given (referencing standards when 
possible), and a procedure for its measurement was described, along with accuracy considerations. This effort 
tried to reconcile the variety of metric definitions and measurement methods that are often possible. 
 

4 Network Metric Composition (Transformation Service) 

Setting a common understanding of network metric definitions, their measurement methodologies and their 
accuracy is, unfortunately, not enough. In general, network measurements need to be post-processed (composed) 
to be useful for the several tasks of network engineering, management and planning. This becomes fundamental 
in a multi-domain environment such as the one targeted by perfSONAR. 
There are several reasons for composing network metrics: The first one is data reduction. Consider for example a 
network domain in which delay measurements are performed on all links. A network manager might ask whether 
there is a general problem with the network delay. Therefore, it would be desirable to obtain a single summary 
value calculated from the delay measurements on single domain’s links. We call this composition “aggregation 
in space”. In the example in Figure 2, a weight proportional to the carried traffic on the links is applied, to 
produce a summary OWD value for this single domain. Other rules to produce a summary value may be used 
(e.g. the maximum of the average OWD on single links, without any weight), depending on the foreseen usage. 
Another important reason for composing network metrics is to perform trend analysis. For doing so, a single 
value for an hour, a day or, a month is computed from the basic measurements which are scheduled with finer 
granularity, e.g. every five minutes (see Figure 2). In this way, trends can be more easily witnessed, like an 
increasing usage of a backbone link which might require the installation of alternative links or the rerouting of 
some network flows. This type of composition is called “aggregation in time”. This method reduces the amount 
of monitoring data at the expense of data resolution. Aggregation in time is widely used by visualisation tools, 
such as MRTG [10], that present various network performance parameters in different time scales. 
Finally, composition may be performed for scalability. Due to the number of network elements in large networks 
like GÉANT and the connected NRENs, it is impossible to perform a full mesh of measurements between all the 
equipment, neither regularly nor on demand. However, if regular measurements are scheduled between selected 
Measurement Point pairs, say A to B and B to C, we can try to infer the value of a network performance metric 
(e.g. the OWD) on a path, say A to C, even in absence of a direct measurement among the end points of that 
path. This type of composition is called “concatenation in space” (see Figure 2). 



 
Figure 2 – The three possible metric composition types 

 
For each selected network metric, we examined which composition operation can reasonably be applied and for 
what purpose, which statistical operations are more useful (e.g. average, max, min, X-percentiles, median) and 
when it is useful to perform in sequence two or more compositions. A summary of the results is shown in Table 
1, and some details are explained in the following. The full work is contained in [5]. 
The lower part of the table shows which composition operations are useful with respect to metrics, and the 
specific statistical operation done during the composition. For example, it is reasonable to aggregate OWD 
measurements in time by computing a value for a longer time interval taking the average of measured values. 
Always regarding aggregation in time of OWD, it is better to use a 97.5% - 2.5% percentile aggregation to avoid 
extreme values resulting from measurement inaccuracies, instead of simply calculating a maximum/minimum 
value. 
The remark “ToS effect” for aggregation in space of packet loss measurements means that it can be interesting to 
track whether the prioritisation of packets in router waiting queues leads to different packet loss for different ToS 
values. 
The concatenation in space for available bandwidth and capacity is only reasonable for minimum, because the 
minimum bandwidth of a link is the bottleneck when transferring data through a concatenation of links. 
The achievable bandwidth on a path requires sending a lot of test packets which will likely disturb other traffic. 
Therefore, these measurements will be carried out in specific situations only so that no data for composition will 
be available (no longer periods of time, only along the specific path). Moreover, since the end to end Round Trip 
Time plays a role in these kinds of tests, concatenating results on consecutive path portions makes little sense. 
For the concatenation in space of OWD, RTT, and IPDV special constraints arise so that an experimental 
analysis has been conducted. It is described in the next section.  



 
Table 1 – Summary of the composition study 

 
  Aggregation in time Aggregation in space Concatenation in space 

Definition 

Aggregate measurements of the same 
scope and type performed in different 

time windows or time instants. 

Aggregate measurements of the 
same type but of different (physical 

or logical) scope. 

Concatenate measurements of the 
same type performed on consecutive 

paths 

Usability 
Reduce the amount of collected data, 

observe trends. 

Provide a summary metric value 
for a group of network elements or 

links in a domain. 

Combine the results from multiple 
measurements in order to estimate 
the e2e performances for a longer 

path. 

Requirements NA NA 
Measurements should be taken in 

consecutive links. 

 NA 
Measurements should be performed in the same timeframe 

 

 
Measurements should be performed with the same type-packets, e.g. size, ToS, etc. (For space aggregation, this applies 

to physical space aggregation only. Locical space aggregation is by definition over packet properties!) 

 

Measurements should to be collected 
during all the time widow. Otherwise, 
measurements have to be weighted. 

Measurements should be weighted 
according to the link characteristics 
(e.g. capacity, utilisation) and their 

significance  

 NA 
Measurements should have comparable accuracy. 

 

 
Operations should be performed over an adequate data set. 

 
Most relevant  
Operations    

OWD, RTT Average, percentiles Average, maximum, percentiles 

Average 
Percentile (but difficult to compute 

exacty) 

IPDV Average, percentiles Average, maximum, percentiles 

Average 
Percentile (but difficult to compute 

exacty) 

Packet Loss Average, median, percentiles 
Average 

minimum,maximum (ToS effect) Average 

Available 
Bandwidth Average, minimum, maximum 

Average, minimum, maximum, 
percentiles Minimum 

Utilisation Average, median 
Average, minimum, maximum, 

percentiles NA 

Capacity 
NA (capacity is a slowly varying 

“metric”) Average, minimum, maximum Minimum 
Achievable 
bandwidth 

NA (Not likely that tests are performed 
regularly) NA NA 

Availability Average Average Average 
 
 

5 Experimental Assessment of Concatenation in Space  

It is simple to apply concatenation in space operation using mean OWD values. For example, the mean OWD 
value along the path from host1 A to host C via host B (<OWDAC>), knowing the corresponding mean OWD 
values along the path from host A to host B (<OWDAB>) and B to C (<OWDBC,>), is given by the following 
(intuitive) formula: 
 

<OWDAC > = <OWDAB> + <OWDBC > 
 
However, the mean OWD value is not a sufficient metric to assess the performance along a path, especially 
when delay-sensitive applications are deployed over the network. In such cases, it is highly recommended to 

                                                           
1 Measurement points are typically located “close” to the host/router (e.g. connected through a high speed LAN switch) so that the time 

the measurement packet is received and timestamped by the host is a good approximation of the time it transits through a host’s interface. 



estimate a high quantile2 for the OWD along a path. This introduces challenges from a statistical point of view as 
the quantile of OWD along the path AC can be computed only knowing the corresponding OWD distribution 
along the path AC. If the latter is unknown, the only possibility is to compute it from the distributions of OWDAB 
and OWDBC by performing the convolution of these two distributions. The convolution [8] of two distributions f 
and g is a mathematical operation involving an integration and is denoted as “f*g” or “f⊗g”, or “f(x)g”. It is 
important to note that we assume that the OWD variables along the two path portions, i.e. from A to B and from 
B to C, are independent. 
To prove the applicability of the convolution approach to infer the high quantiles of OWDAC given two 
independent OWDAB OWDBC datasets, we collected OWD measurement data among three different IPPM 
measurement boxes [7]; in Erlangen (Germany), Frankfurt (Germany) and Rome (Italy). We collected 
measurements on both A to B, B to C and A to C, to be able to compare the values given by composition 
formulas with a direct measurement. In our experiments, we were sure that the routing of packets from A to C 
was through B, which is of course a requirement for such an analysis to make sense. Each IPPM measurement 
box transmitted 5 packets per second. We observed that the OWD distributions (of both AB, and BC and AC) 
are very concentrated around the typical, minimum value for each path. As shown in Figure 3, most of the 
singleton delays along the path A-B-C (Erlangen-Frankfurt-Rome) are around 15 ms, as “represented” by the 
thick line at the bottom of the graph. However, there are quite regularly high values, appearing throughout the 
12-hour measuring period. These high values represent less that 0.6 % of the total collected values, but they are 
exactly what needs to be kept under control to ensure the good functioning of the network. 
 

 
 

Figure 3 – Snapshot of 12-hour measurement of OWD along the path “Erlangen to Rome via Frankfurt”. 
 

In Figure 4, we use a Quantile-Quantile plot to assess the difference among the convolution of distributions AB 
and BC with the “real” distribution of AC. If the convolution AB⊗BC was exactly like the distribution of AC, 
all the points would marked on the diagonal .We used the following range of quantile values: 0.1, 0.2, …, 0.9, 
0.91, 0.92, …, 0.99, 0.991, 0.992, …0,999. The bottom-right graph in Figure 4 zooms into the quantiles up to 
0.993, which appear concentrated on a single point on the upper-left graph. We can note that for the highest 
quantiles (0.994 and over) there is a significant drift. This corresponds to the points in the graph in Figure 3 that 
have a value above 20ms (thus is the upper “sparse” region of the graph). Although the drift is significant, we 
note first that it does not tend to diverge as the quantile approaches 1 (on the contrary, it tends to get closer again 
to the diagonal), and second that the prediction given by AB⊗BC is below the diagonal (i.e. the prediction of the 
OWD is higher), and thus can be used as a conservative value for an SLA. For the lowest quantiles (up to 0.993 - 
see bottom part of Figure 4) we see that the prediction is good, as it remains within 1.3% of the real value 
(consider that the scale of the graph is enlarged). 

                                                           
2 A q-quantile of a random variable X is any value x such that Pr(X ≤ x) = q. While quantiles can take whatever value (e.g. 0.999) 

percentiles are specializations of quantiles constrained to take values with only two significant decimal digits, (e.g. 0.90, or 0.95). The 
terminology percentile exists for historical reasons. 



The presented results are preliminary, but to our knowledge a similar validation test for the convolution approach 
has not been performed yet. 
Further analysis is needed to confirm the obtained results, and understand the reason of the big differenced for 
the highest quantiles in the upper graph (it may be due e.g. to the fact that the delays on AB and BC are not 
temporally independent) as well as the reason of the small, fixed offset that appears in the lower graph. 
 

 
 
Figure 4 – Comparison of the OWD quantiles of a direct measure from A to C and of the quantiles of the 

convolution of AB (x) BC. The lower graph is a zoom of the initial part of the upper one 
 

6 Related work 

In the standardization arena, both the ITU-T and the IETF produced several recommendations (respectively, 
RFCs) about performance metrics for IP networks. The more relevant ITU-T recommendations are Y.1540 [11], 
defining the performance metrics, and Y.1541 [12], defining 6 different classes of service, and specifying the 
performance bounds for network delays, losses and errors that define these classes. The IETF IPPM WG 
published several RFCs about performance metrics for IP networks as well ([6]), but without defining any 
service classes on the basis of their values. The IETF also specifies in RFC 3763 [ 19] requirements for a One-
Way Active Measurement Protocol (OWAMP), similar to the IPPM protocol [7] used in this work. 
The issue of metric composition has been addressed by the ITU-T in an amendment to Y.1541 [13], limited to 
the case of concatenation in space of losses, errors and delays. In a forthcoming revision, [14] some approximate 
formulas (not based on the full convolution) to compose OWD quantiles are proposed, but these formulas are 
based on a modelling approach, without the support of real data observations. 
In the IETF, no significant work in the metric composition has been performed yet, but recently the group 
decided to undertake this activity, and draft documents for time and space composition are planned by the end of 
2006 in the IPPM Working Group [6]. A Framework document [15] has already been published, containing 
some of the concepts developed by JRA1 in [5]. 
The perfSONAR project is related to, and influenced by a variety of other network monitoring efforts. The 
Network Weather Service [16] uses statistical forecasting techniques to predict network performance from a 
time-series of network measurements. Internet2’s piPEs infrastructure [2] includes an implementation of the 
OWAMP protocol as well as support for the scheduling of recurring active measurements of available 
bandwidth. The Intermon [17] project focuses on many aspects of inter-domain network monitoring and analysis 



with a particular emphasis on Quality of Service (QoS) issues. MonALISA [18] is a distributed network 
montoring system with a wide deployment in Grid computing systems. 
 

7 Conclusion and Future Work 

The JRA1 [1] in the GÉANT2 project, in cooperation with the Internet2 [2] and ESnet [3], developed 
perfSONAR [4], a Service Oriented monitoring architecture for retrieving, storing, processing and presenting 
network performance metric measurement data in a multi-domain network environment. The first development 
phase for perfSONAR prototype has been completed and a few demonstrative services are already available for 
testing. We presented in this paper some results of a study for harmonising the choice of network performance 
metrics in a multi-domain environment, and for defining common procedures for metric post-processing (or 
composition). In particular, we classified the possible compositions in three main categories: aggregation in time, 
aggregation in space, concatenation in space, and explained the utility and challenges associated with each of 
them. For concatenation in space, we also presented the analysis of some One Way Delay data we collected, the 
analysis being finalised to validate a procedure for getting a picture of the performances on an end-to-end path 
given the availability of performance measurements only on disjoint sections of the path. This operation has an 
important practical utility, since in large network it is unpractical to setup dedicated measurements among each 
possible couple of end points of interest. 
Future work will extend this experimental validation of concatenation in space, possibly applying it also to the 
IPDV (jitter) metric. Moreover, we wish to address the detailed study of the error propagation when 
compositions are applied and the experimental verification in real networks of all the proposed composition 
strategies. 
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