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ABSTRACT
Color is a feature of the great majority of content-based image retrieval systems. However the

robustness, effectiveness, and efficiency of its use in image indexing are still open issues. This paper
provides a comprehensive survey of the methods for color image indexing and retrieval described in
the literature. In particular, image preprocessing, the features used to represent color information,
and the measures adopted to compute the similarity between the features of two images are
critically analyzed.
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1 INTRODUCTION

Color has been widely used for content-based image and video retrieval in multimedia databases.
Much research has been devoted in recent years to the definition of effective and efficient tools for
specifying visual queries and implementing retrieval strategies that satisfy some criteria of matching
or pictorial similarity. The use of color has been extensively experimented in
1. color matching, to find images containing specified colors in assigned proportions, e.g. [8];
2. similarity searches, to find a ranked list of images “similar” to an image provided or hand

sketched by the user, e.g. [3] [33];
3. region searches, to find images containing regions of color as specified in a query , e.g. [39],

[69];
4. target searches, to find a list of the images in which an object specified by the user

appears[58][71];
5. semantic categorization, to group images in meaningful categories, such as graphics as opposed

to  photos, or indoor as opposed to outdoor pictures, e.g. [79];
6. retrieving images with certain color-induced effects, e.g. [15].
All these tasks depend upon the definition of robust and efficient color features that can represent
image contents. Unfortunately, there is no single "best" representation of color, but only multiple
representations which characterize the color feature from different perspectives. In any given
context, however, the selected features will ideally present the following basic properties:
1. perceptual similarity: the feature distance between two images is large only if the images are not

"similar";
2. efficiency: they can be rapidly computed;
3. economy: their dimensions are small in order not to affect retrieval efficiency;



4. scalability: the performance of the system is not influenced by the size of the database;
5. robustness: changes in the imaging conditions of the database images do not affect retrieval.

In matching images, a feature similarity/dissimilarity function must be coupled with the color
features. A distance d is defined as +ℜ→ℑ×ℑ:d  and must satisfy the following four properties
for all images I, J and K in ℑ:

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( ) inequalitytriangularJIdJKdKIdP

symmetryIJdJIdP

minimalityIIdJIdP

similarityselfJJdIIdP

4

3

2

1

,,,:

,,:

,,:

,,:

≥+

=
≥

−=

Any function satisfying P1,  P2 and P4 is a metric. Any function satisfying P1, P2 and P3 is a
similarity measure.
A schematic description of the activities of a visual information retrieval system (VIR) is shown in
Figure 1. During input, images are processed to compute the features selected to represent the
image contents. This process, called indexation or indexing, assigns to each image a set of
identifying descriptors, or indices, which will be used by the system in the matching phase to
retrieve relevant images and reject extraneous ones. The indices are stored in the database, ideally
are designed for efficient retrieval. Different features (color, shape, texture, size, distance, relative
position, etc.) express different aspects of image contents, and may, of course, coexist [14]. Only
color-based features are considered here.

When an image query is posed, its color features are extracted from the database, or computed using
the same procedures applied to input images. Image retrieval is then performed by a matching
engine, which compares the features of the query image with those of the stored images. The
matching mechanism implements the retrieval according to the selected metric, or similarity
measure. The images of the database are ranked according to their similarity/match with the query,
for evaluation by the user according to his information needs.

Figure 1. Schematic description of the activities of a VIR system.



With a very few exceptions, the effective and efficient computation of color indices requires a
drastic reduction in the number of colors used to represent the color contents of an image. The
algorithms employed for this are reviewed in Section 2. Once the number of colors has been
sufficiently reduced, many different strategies for representing and comparing color distributions
can be used. These strategies are described in Section 3. Image retrieval based purely on color
distribution tends to include too many false positives when the database is large. The several
possible extensions of global color features to code local spatial information are described in
Sections 4, 5, and 6. In Section 7 the integration of color-based features with other features is
discussed. Our conclusions are presented in Section 9, together with an indication of what we see as
the road map for future research.

2 COLOR DISCRETIZATION

The drastic reduction in the number of colors used to represent the color image content that
effective and efficient computation of color indices usually demands is in general achieved by color
space quantization, using a predefined color palette (static quantization), or by clustering and/or
spatial segmentation (dynamic quantization). Formally, we let C be a color space, and

{ }Cn,Ccc,...,c,...,c,cP ini21 <<∈= , a subset of C called the quantization space. A function Q

that maps each color in C to an element in P is called a quantizer, and is defined as:

PC:Q →

A schematic representation of the different quantization methods is given in Table 1.

Image 
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Color Discretization

Most 
Significant Bits

Color Space 
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Color Space 
Clustering

Reference 
Colors

Table 1: Quantization methods.

Several authors have used only a few (generally two) of the most significant bits of each of  the R,
G, and B color channels to severely reduce the number of image colors [55][59]. But the lack of
perceptual rules for color mapping may cause considerable shifts in color.

Smith and Chang [69] have partitioned the HSV color space into 166 bins, placing more importance
on hue (18 levels) than on value and saturation (three levels each). Before computing the image
index, a median filter is applied on each HSV color component to eliminate outliers and emphasize
prominent color regions.

The QBIC system [33] makes it possible to compute a k element color histogram, where k can be
set by the user (the default value is 64). Each R, G, and B color axis is initially quantized in 16
levels, obtaining an initial partition of the RGB color space into 4096 cells. The coordinates of the
center of each cell in a Modified Munsell color space [54] are then computed, and a standard,



greedy minimum sum of square clustering is performed to obtain k "super-cells". A similar partition
has been applied in the HSV color space by Jain et al.[54][79].

Ciocca et al. have quantized the device color space in two steps. First, a random sampling of few
million colors is generated in the RGB color space. These samples, assuming that they are coded in
sRGB terms, are mapped into the CIELAB color space, where a competitive cluster algorithm [78]
is then applied to find the 64 most significant colors. The colors of the images to be indexed are
mapped in the CIELAB color space, and assigned to the nearest of the 64 centroids [14].

Syeda-Mahmood [70] has proposed a quantization method that partitions the RGB color space into
about 220 subspaces (categories) in which the color remains perceptually the same and distinctly
different from that of neighboring subspaces. This partition was obtained by a "rather informal but
extensive psychophysical experiment", which systematically examined the device-dependent HSV
color space. A look-up table was used for the mapping between the RGB values and the color
categories.

Gagliardi and Schettini [29] have proposed the use of multiple descriptions of color in order to deal
with the intrinsic variability in human evaluation of color similarity. Their quantization method
partitions the gamut of feasible colors into equivalence classes corresponding to standardized
linguistic tags. The CIELAB color space is divided into 256 subspaces (categories), in each of
which the color remains perceptually the same, is labeled with its own linguistic tag, and is
distinctly different from that of neighboring subspaces. The color stimuli representing the color
categories are derived from the ISCC-NBS color naming system proposed in 1955 by the Inter-
Society Color Council and the National Bureau of Standards The images quantized by this method
are further clustered in a set of 13 equivalent classes representing basic color terms (black, gray,
white, red, orange, yellow, green, blue, violet, purple, pink, brown, and olive) to produce a coarse,
but completely unsupervised image segmentation.

In their ImageRover system [67] Sclaroff et al. have first transformed the RGB values into the
CIELUV space, after which each color axis is split into 4 equal size bins for a total number of 64
bins (theoretical, since very dark and very light colors can not have a high chroma).

In order to achieve a more compact representation of color images, Mehhre et al [50] have
heuristically defined a small set of RGB reference colors in which all the colors in the application
(trademark indexing) are approximately covered. Each pixel of the color image is simply assigned
to the nearest color in table. This type of discretization must be performed very carefully, and
requires a high level of interaction. When a large subset of the image database is available, the color
space can, instead, be partitioned so that each discrete color appears with approximately equal
likelihood in order to maximize the information conveyed [37].

Gong et al. [32] have roughly partitioned the Modified Munsell color space (the same used by
QBIC) into eleven color zones defined and validated empirically by different groups of examiners.
A similar partition has been proposed by Cox et al. in the PicHunter system in HSV [16], and by
Ciocca et al. in the Quicklook system [14].

Other authors [8][50][64] have investigated the feasibility of image-dependent color
quantization/segmentation by clustering. The main issues in this case are the strategy adopted to
predict the number of valid clusters/regions in the image, the computational cost, and the need of
sophisticated measures for evaluating similarity. The resulting image signature may represent the
color image content very well. However, as is well known, unsupervised image segmentation is a
ill-posed problem: when little is known about the images to be indexed and the clustering-
segmentation parameters can not be tuned accordingly, the risk of serious errors should not be
underestimated.



Liu and Yang have proposed a function that does not require any user-set parameter or threshold
values for the quantitative evaluation of the performance of algorithms for the segmentation of color
images [43]. The function has been designed to incorporate, directly or indirectly, three out of the
four heuristic criteria suggested by Haralick and Shapiro [34] for evaluating segmentation results
without having to set threshold values for any of the subjective properties of region size, shape, or
homogeneity. The incorporated criteria are: 1) the regions must be uniform and homogeneous, 2)
the interior of a region must be simple, without too many small holes, and 3) adjacent regions must
present significantly different values for uniform characteristics. The authors, commenting on their
experimental results, suggest that their function also takes into account, although indirectly, the
smoothness of the boundaries (part of the Haralick and Shapiro's fourth criterion, which includes
boundary accuracy). The evaluation function is empirically defined as:
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where I is the segmented image, N×M the image size, and R the number of regions of the segmented
image, while Ai and ei are, respectively, the area and the average color error of the i-th region; ei is
defined as the sum of the Euclidean distances between the RGB color vectors of the pixels of region
i and the color vector attributed to region i in the segmented image. The smaller the value of F(I),
the better the segmentation result should be.
The equation is composed of three terms: the first is a normalization factor which takes into account
the size of the image; the second, R , penalizes segmentations that form too many regions; the
third, the sum, penalizes segmentations with non-homogeneous regions. Since the average color
error ei of the region is significantly higher for large regions than for small ones, ei has been scaled
by the factor Ai . The authors, who report a good match between function values and visual

evaluation of the corresponding image segmentations, have used function F to automatically select
the best segmentation, varying the color space and the dissimilarity measure employed in their
algorithm. Since this function tends to evaluate very noisy segmentations favorably, Borsotti et al.
[10] have proposed an enhanced function that corresponds more closely to visual judgment:
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where all the entities are as previously defined for F, while R(Ai) represents the number of regions
having an area equal to Ai. The body of the sum is composed of two terms: the first is high only for
non-homogeneous regions (typically, large ones), while the second is high only for regions with an
area Ai  equal to the area of many other regions in the segmented image (typically, small ones). The
design of this new term takes into account the fact that the number of regions of area Ai in a given
image will probably be small if area Ai has an high value, in which case R(Ai)/Ai contributes little to
the sum. On the other hand, the number of regions of area Ai may be large, if the area Ai has a low
value; here R(Ai)/Ai  contributes strongly to the sum. Heuristically it can be said that R(Ai) is most
always 1 for large regions, and may be much larger than 1 for small regions. In any case, the
denominator Ai drastically forces the term R(Ai)/Ai to near zero for large regions, and lets it grow for
small regions.



A different approach has been proposed by Del Bimbo [19]. Image colors are first quantized on a
palette of 128 reference colors by a competitive learning algorithm. Region segmentation is then
obtained by iteratively aggregating uniform color patches, so as to minimize the following
measures:
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where 
iRA  is the area of the region iR , 

iR
D is a measure of color uniformity of region iR , 

Ji RRD − is a

measure of the difference in color between iR  and its adjacent regions jR , and γβα ,,  are control
parameters. Color regions are iteratively aggregated until a minimum of F is found; the values of

γβα ,,  are then adjusted, and the procedure repeated. The image segmentations produced by this
process are then organized in a pyramidal schema.

 a)  b)

 c)  d)

 e)  f)

Figure 2. a) original image, b) image quantized using 2 bits per color channel, c) image quantized using eleven color
classes corresponding to basic color names d) image quantization by partitioning the HSV color space into 64 bins, e)
image quantized in 64 colors using color space clustering, f) image quantized in 64 colors using a segmentation
algorithm.



3 COLOR INDICES

Once the number of color images has been significantly reduced, they can be coded in many
different ways in order to represent the image content. Very often color is represented by
histograms; in this case it is the matching strategy that most distinguishes the different retrieval
methods. A color histogram, H, is a vector [h1,… hn] in which each bin hj contains the number of
pixels having the color j in the image and can be considered the probability density function (pdf) of
the color values. If the images to be compared are of different sizes, but have been quantized on a
common palette, their histograms can be compared as follows [75]:
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If the images are of the same size (or the histograms have been scaled to the same size) and
quantized on a common palette, their similarity is commonly measured using the sum of the squared
differences (L2 metric), or the sum of the absolute values of differences (L1 metric). These metrics
usually perform poorly, even for the simplest types of query (Figure 10).

To render the L-metrics more stable with respect to quantization (a slight change in lighting
conditions may result in a corresponding shift in the color histogram, causing these metrics to
misjudge similarity completely, as shown in Figure 3), Stricker and Orengo [72] have proposed the
use of cumulative histograms. But to use these histograms the colors must first be ranked in the
color space.

Figure 3. Misjudged similarity caused by color shift

Hafner et Al. [33] have suggested using a weighted distance between histograms that takes into
account the "cross-talk" between colors. However, these authors were mainly concerned with the
efficiency of the solution, and only marginally with the necessity of coding the perceptual similarity
between colors. According to Hafner the distance between histograms H and H’ is defined as:
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where aij, coding the similarity between the color i and j, is expressed as:
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and dij represents the Euclidean distance between the colors as defined in a variant of the Munsell
color space. They have also proposed an alternative aij:
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for some positive constant value of σ.

In earlier studies Binaghi et al. have exploited perceptual correlates of the psychological dimensions
of Lightness, Chroma, and Hue, defined in the CIELAB-LUV color space to address color range
and image indexing [8]. Using a structured interview technique these authors elicited three primary
fuzzy sets corresponding to similarity in lightness (L*), hue (h*) and chroma (C*) color dimensions.

Each membership function defined assigned a degree of similarity between two colors i and j as a
function of the difference in a given color feature, while the product of these three membership
functions was used to define the global degree of similarity between the two colors considered.
Extending these studies, the authors have defined the similarity between two histograms as:
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Weighted versions of the L2 metric may underestimate distances because they tend to accentuate the
similarity between color histograms presenting many non-empty bins. (see Figure 4) and are also
computationally expensive. Hafner et al. [33] have proposed a simpler low-dimensional distance
measure, called the average color distance, which can be used to perform a sort of prefiltering
before applying histogram matching. An alternative strategy for increasing retrieval efficiency is
described in [6].

Figure 4. Overestimated similarity with histograms lacking well defined modes.

Stricker has proposed two other approaches more efficient than those based on color histograms, as
they do not require color quantization, and produce more compact indices [73][74]. In the first,
instead of storing the complete 3D color histogram, only the first three moments of the histograms
of each color channel are computed and used as an index; in the second, the image is represented
only by the average and covariance matrices of its color distribution.
The features of mean, variance and skewness can be computed for the i-th color channel as follows:
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The similarity functions used in these approaches for retrieval is a weighted sum of the absolute
differences between the features computed. Each feature entry is weighted by a value,

0≥3i2i1i w,w,w , selected by the user, depending upon the specific application (figure 11).
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If the images to be compared have been quantized on different color palettes, none of the above
metrics can be applied.

Rubner, Guibas and Tomasi have defined the distance between two color distributions as the
minimum amount of work needed to transform one color distribution into the other [64].
Alternatively, Hausdorf distance, o modified Hausdorf distance can be applied. This provides the
degree of mismatch between two color signatures (A, B) as the maximum distance between the
colors of A and those of B:
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Androutsos et Al. [2] have designed a combinatorial distance measure, based on the vector angle
between two vectors. It allows queries based on single and multiple colors and, in addition the
exclusion of certain colors.

All these methods neglect the spatial relationships of color pixels; consequently, images that are
actually different in appearance may be judged similar simply because they have a similar color
distribution. To further complicate things, observers disagree in their evaluations of color similarity,
and a set of similar images found by browsing the original images may not coincide with that
obtained by browsing the database version in which the color distribution has been preserved but
the original image structure has been changed at random [3].

4 COLOR SPATIAL INDICES

The main weakness of all the indexing methods described above is the lack of spatial information in
the indices. For example, all the patterns shown in Figure 5 have the same color proportions, but
different spatial distributions. Their appearance is clearly quite different, so obviously we can not
assume that color distribution always suffices to represent the pictorial content of an image.



Figure 5. Some patterns having the same color proportions, but different spatial distributions.

Since in most applications complete segmentation implies a great deal of user interaction during
database acquisition, this approach is not feasible for large image databases. The simplest way to
provide spatial information is to divide the image into sub-images, and then index each of these.
Gong et al.[32], for example, model the color-spatial information of an image by splitting it into
nine equal sub-images, and representing each sub-area by a color histogram. However, although
conceptually simple, this approach may still not provide accurate color-spatial information, and is
expensive both to compute and to store.

To facilitate the search of large-scale image collections Smith and Chang have used color sets to
approximate histograms. Color sets correspond to salient image regions, and are represented by
binary vectors to allow a more rapid search [69].

Stricker and Dimai [74] have split the image into a oval central region and four corners. Their
system evaluates and combines the color feature similarity of each of these sub-images, attributing
more weight to the central region. This is, however, a strictly domain-dependent solution: while it
could be effective for an archive of photographs, it might not work well in other applications. Some
splitting strategies are shown in Figure 6.

Figure 6. Examples of possible sub-image indexation.

Stricker [71] has used boundary histograms to encode the lengths of the boundaries between
different discrete colors, in order to take into account geometric information in color image
indexing. But this method may yield a huge feature space (for a discrete color space of 256
elements, a boundary histogram of 32,768 bins), and is not robust enough to deal with textured
color images. Gagliardi et. al. [29] have investigated the use and integration of different color
information descriptions and similarity measurements to enhance the system’s effectiveness. In
their method both query and database images are described in the CIELAB color space with two
limited palettes of perceptual significance, of 256 and 13 colors respectively. A histogram of the
finer color quantization and another of the boundary lengths between two discrete colors of the
coarser quantization are used as indices of the image. While the former contains absolutely no
spatial information, but describes only the color content of the image, the latter provides a concise



description of the spatial arrangement of the basic colors in the image. The similarity between two
boundary histograms BQ and BD is computed as follows:
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where s( ) is the size of the histogram that is the sum of the edge lengths in the image.
Normalization is necessary as the size of the boundary histogram is not constant, but depends upon
the image segmentation. Since the images are coarsely segmented, the boundary histogram is little
influenced by minor image details and noise.
Suitable procedures for measuring the similarity between histograms are then adopted, and the
measures combined to model the perceptual similarity between the query and target images.

Pass, Zabih and Miller [59] also present a histogram-based method for comparing images that
incorporates spatial information. They classify each pixel of the quantized image as either coherent
or incoherent, depending upon whether or not it is a part of a “large” similarly-colored region (a
region is classified as large if its size exceeds a fixed user-set value). By counting coherent and
incoherent pixels separately the method offers a finer distinction between images than color
histograms alone can provide (Figure 12)

For each color ci the number of coherent pixels, 
icα , and the number of non-coherent pixels, 

icβ  are

computed; each entry in the CCV is thus a pair (
ii cc βα , ), called a coherence pair. The whole

coherence vector is defined as:
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icβ  is clearly the number of pixels of color ci present in the image; the set of the sums
for i=1..n represents the color histogram. The L1 distance can be used to compare two CCV:
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Spatial Chromatic Histograms (SCH) [12] combine information about the location of pixels of
similar color and their arrangement within the image with that provided by the classical color
histogram. For every color in the quantized image, the percentage of pixels having the same color is
calculated, and the spatial information summarized in the relative coordinate of the baricenter of
their spatial distribution (b) and the corresponding standard deviation from the bariceter (σ).
Combining histogram and spatial information requires a new distance function. Given two Spatial
Chromatic Histograms H  and 'H  having c bins, the distance is computed as follows:
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where h(i) is the ratio of pixels having color i.



Mitra et al [55] have proposed new color features for image indexing called color correlograms.
Color correlograms include the spatial correlation of colors, and can be used to describe the global
distribution of the local correlations. These features appear to tolerate even large changes in the
appearance of the same scene caused by changes in viewing position and background, partial
occlusions, and camera zooms. The color correlogram is a set of values (k)

cc ji ,
γ  that gives the

probability that a pixel of color ci lies at distance k from a pixel of color cj:
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where p1 and p2 are two pixels, I is the image, and 
ji cc II , , the set of pixels of colors ci and cj

respectively. Computing the correlogram for a set of m distances k and given c colors of
quantization, the whole feature size is c2m, which is rather high if the quantization is not sparse. To
overcome this problem, another feature, called the banded correlogram, is employed. This feature
merges the results of the correlograms computed on different k:
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The banded correlogram requires c2m/b values. If only local information is needed a small set of
distances suffices to capture the spatial correlation of pixels, further reducing the dimensions of the
feature.

Brambilla et al. [11] have used multiresolution wavelet transform in a modified CIELUV color
space to compute image signatures for use in content-based image retrieval applications, i.e. target
search and similarity retrieval. The multiresolution wavelet decomposition applied is based on Haar
wavelet filtering applied consecutively along horizontal and vertical directions (Figure 7). The
major features of the images are coded in signatures of predefined lengths, which are compared in
the retrieval phase by applying a similarity measure the system has pre-learned from a learning set
of “very similar”, “rather-similar”, “not-very-similar”, and “different” pairs of images, using a
regression model for ordinal responses. This method is related to Jacob et al.’s work [35], in which
a similar approach has been employed to target image search, i.e. to seek a specific image in the
database when only a rough painted sketch or low-resolution version of it is available.

Figure 7. a) original image, b) two-step multiresolution wavelet transform, c) multiresolution wavelet transform.



Figure 8. Examples of 64 and 128 coefficient wavelet-based retrieval.

5 COMPARING SEGMENTED IMAGES

Segmented images represented in the spatial domain are usually described by Region Adjacency
Graphs [58], or by multidimensional indices representing the spatial distribution of the color
clusters [69].

Binaghi et al. [8] have described the segmented image in terms of color, spatial distribution, and
coverage. During retrieval feature differences are mapped to a reduced set of qualitative linguistic
modeling the uncertainty in the color description.

Smith and Chang [69] have developed a method for automatically extracting and indexing
significant color regions from images. These methods utilize efficient indexing techniques for color
information, region sizes, and absolute and relative spatial locations to allow a wide variety of
complex joint color-spatial queries. However, they do not provide a general procedure for
measuring the similarity between two images.

Kankanhalli et al (1999) [39] have combined color and spatial clustering for image retrieval. Color
clustering is applied first, to obtain an initial segmentation; then a component labeling algorithm is
applied to obtain spatial clustering. The spatial color cluster is identified by the mean color value,
the fraction of the image the cluster constitutes, and the coordinates of the centroid. The similarity
between two images is based on five heuristically weighted elements: the similarity between color
clusters, the relative frequency of pixels in corresponding clusters, the spatial distance between
color clusters, the relative frequency of pixels of the corresponding spatial color clusters, and the
spatial distance between spatial color clusters.
The description of segmented images using 2D strings, or their variant is brittle in the sense that
minor changes in region location may greatly affect the comparison of two images. In [17][7], the
authors have introduced an original modeling technique for the quantitative representation and
comparison of the mutual positioning of a pair of extended regions, which can account for the
overall distribution of relationships among the individual pixels belonging to the two regions. In
this approach, the relationship between two regions is represented by a finite set of equivalence
classes (“walkthroughs”) among the dense sets of possible paths leading from any pixel in first
region to any pixel in the second. Each equivalence class is associated with a weight which provides
an integral measure of the set of pixel pairs connected by a path belonging to the class, thus
accounting for the degree of truth with which the individual class represents the actual relationship
between the two regions.



6 ILLUMINANT INVARIANT COLOR IMAGE INDEXING

We may assume that all the images stored in the database are described in terms of sRGB color
coordinates, but we can not always assume constant imaging conditions during data acquisition
(particularly when the database contains images collected from many different sources, such as
material taken from the WEB). In many cases the user may still be able to recognize the colors in
the scene, but we can only guess to what extent an image search engine can perform the same task,
and at what cost when the retrieval is based only on color.

Previous studies in the field of object recognition have drawn attention to how changes in
illuminant conditions modify the colors of the image acquired, and affect the results of color-based
algorithms. Swain and Ballard [75] have suggested the application of a color constancy algorithm to
cope with this problem. Their work has been followed by several attempts to provide for the effects
of illuminant changes through the definition and use in indexing of illuminant-independent color
features.

6.1  Illuminant-invariance achieved with descriptors

A method for deriving illuminant-independent color descriptors has been developed by Funt and
Finlayson [28]. Starting from the assumption of the local constancy of illumination, they have
indexed the derivative of the logarithm of the image, which is, in effect, the ratio of neighboring
colors. The histogram of the derivatives of the logarithm of an image codes the lengths of the
boundaries between colors, providing an illumination-independent description of the image. These
authors' experiments on small sets of synthetic and real images have demonstrated that their color
constant color index algorithm performs slightly worse than Swain's under fixed illumination, but
substantially better than Swain's under illumination that varies both spectrally and spatially.

In a subsequent publication, Finlayson et al. [22] have proposed the use of color angular indexing to
describe image similarity. In the angular indexing paradigm, objects are represented by the three
color angles. To these the authors have added three color texture angles, calculated after a linear
filtering of the image. Using these six features they have obtained illuminant-invariance in
indexing, while accelerating matching process by drastically reducing the parameters to account for,
from the 4064 of Swain and Ballard’s histogram to 6. In their experiments they have found that this
method performs better than color indexing [75] and color constant color indexing [28] in the
presence of changes in illumination.

Gevers and Smoulders have proposed various color models and checked their invariance under
changing imaging conditions, including the presence of shadows and highlights [30][31]. These
tests were performed on a database of about 500 images. One of the color model proposed assumes
dichromatic reflection and white illumination, and is independent of the viewpoint, surface
orientation, illumination direction and intensity and highlights [31]. An instantiation of this model
is:
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A further model which was demonstrated to be invariant for illuminant color as well is
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where R, G, B are the color values in the RGB color space and x1 and x2 are the locations in the
image of two neighboring pixels.

Berens and Finlayson [5] have proposed a method that addresses simultaneously the problem of
illuminant-invariance in indexing and the dimension of color histograms. Each (R,G,B) coordinate
is transformed into a log-chromaticity space defined by:
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In this color space, illuminant changes result in a translation of coordinates; consequently
illuminant-invariance can be accomplished by mean subtraction. To reduce the dimension of the
matching problem, the authors have  coded the log-chromaticity distribution obtained by projecting
it onto a PCA base. Using Funt et al.’s dataset of 11 objects photographed under 4 different
illuminants they have demonstrated how removing the mean from the log-chromaticity coordinates
removes the effect of illuminant variance on the color distribution.

In [46] Mandal et al. have presented a method to define illuminant invariant moments. Assuming
that the change in illumination is uniform, and the illumination does not produce a nonlinear effect
on the image, the histograms of an image with varying lighting conditions can be approximated as a
translated and scaled version of each other. This translation and scaling effect can be countered by
using as image indexing, a set of moments of a translation and scale invariant (TSI) histogram. If
we assume that the change in illumination has dilated the pdf of an image by a factor α, it can be
demonstrated that the k-th central moments and normalized central moments of the pdf of the
changed image and those of the original image are related as follow:
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From the normalized central moments, a set of translation and scale invariant (TSI) moments can be
defined as:
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Since β1 is equal to zero, the ηk’s can be considered moments of a pdf with the first moment set at
zero, and the second set at one, whatever the value of α that transformed the image’s illumination.
In [47] Mandal et al have defined a procedure to convert TSI moments to the corresponding
Legendre moments as it has been shown that these perform better than central moments.

Mandal et al [47] have proposed a method of image indexing using illumination-compensated
standard deviations and shape parameters of highpass wavelet subimages. They have demonstrated
that the standard deviations of the coefficients of the wavelet subbands are related to each other by a
linear function of the illuminant scale factor α:
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The histograms of highpass wavelet coefficients can be described using a generalized Gaussian
density function which depends on a parameter called shape (γ) [9]. For the shape parameter the
following relationship holds:

( )αγγ −+= 1' c
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The standard deviation and the shape parameter are used as indexing values: first, the scale factor α
is estimated by comparing the β2 moments of the histograms corresponding to the query and target
image (see the translation and scale invariant moments), then the new values are calculated from the
above equations, and used to evaluate the distance between the two images.

6.2 Illuminant-invariance achieved by image pre-processing

All the previously mentioned studies address the definition of illuminant-invariant color features.
Funt and Barnard [26] have, instead, compared five preprocessing algorithms for normalizing
images to a standard neutral illuminant and removing the effects of varying illumination conditions
in the acquired scenes. The algorithms tested were: White Patch Retinex, Greyworld, 2D Gamut-
constraint and 3D Gamut-constraint and Neural Networks. They were run on 110 images of 11
objects viewed under 5 different illuminants and in 2 different positions. Apart from the obvious
conclusion that color constancy improved color indexing when the target image was produced
under an illuminant different from that used to acquire the corresponding image in the database, the
results achieved by color constancy algorithms were disappointing. The best performer was
successful only 67% of the time, compared with the 92% when the illuminant was known.

Finlayson et al. [23] have presented a comprehensive image normalization which removes image
dependency on lighting geometry and illumination color. Their approach alternates normalization
for illumination intensity and a normalization for illumination color, iterating this process until a
stable state is reached. If an RGB image of N pixels is represented with a Nx3 matrix, the
normalization operators are defined as:
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where i,j indicates the ijth element of the matrix. The algorithm can be outlined as follows:

1. I0=I Initialization

2. Ii+1=C(R(Ii)) Iteration

3. Ii+1=Ii Termination condition.

The experiments were run out on a database of about 100 images.

Retinex was originally proposed by Land and McCann [41] in order to understand and emulate
human color perception. Many variations of the method have been developed in the last thirty years
[48][27]. Ciocca et al. [13] have recently examined the performance of various color-based retrieval
strategies when coupled with a pre-filtering based on Brownian Look Up Table Retinex algorithm
[48] to see whether, and to what degree, Retinex improved the effectiveness of the retrieval,
regardless of the strategy adopted.
The retrieval strategies implemented have included color and spatial-chromatic histogram matching,
color coherence vector matching, and the weighted sum of the absolute differences between the first
three moments of each color channel (see Section 7 for a description of the retrieval algorithms).
The experiments were performed on two databases, containing 310 paintings and 387 ceramic
objects respectively: 15 images were randomly selected from each database, simulating for each of
these a change in imaging conditions, using one of eight illuminants. These images were then used
to query the corresponding database, employing one strategy at a time, first without any pre-
filtering, and then applying the Retinex algorithm to both the query and the database images. The
conclusion was that Retinex pre-filtering improved the retrieval effectiveness of all the retrieval
strategies implemented. A simple comparison of the improvements in performance suggests that
better results are obtained when Retinex is coupled with color quantization.

Figure 9 shows images resulting from the application of Marini et al.’s version of Retinex [48] and
of that defined by Funt et al. [27]. The algorithms have been applied to images of the same scene
under different illuminants.



a) b)
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Figure 9. a) Original image. b) Simulation of a warm illuminant. a1) b1) Retinex proposed by Marini et al. on image a)
and b). a2) b2) Retinex proposed by Funt et al. on image a) and b).

7 INTEGRATION WITH OTHER FEATURES

Most content-based image retrieval systems do not exploit only color and spatial-color features for
characterizing image content. All the low-level features that can be computed automatically, i.e.
without human assistance, could be computed and associated with the color-based features
described  in the previous Sections to index an image database. In many systems color-based
features have already been coupled with texture and edge/shape features.
Texture has been widely studied in psychophysics, as well as in image analysis and computer
vision. However, our understanding of it is still very limited, compared with our knowledge of other
visual features, such as color and shape. Most of the computational methods available for describing



texture provide for the supervised or unsupervised classification of image regions and pixels.
Within these contexts gray level textures have been processed using various approaches, such as
Fourier transform, co-occurrence statistics, directional filter masks, fractal dimension and Markov
random fields (for a review of the various methods, see [20][77]).
Rao and Lohse have designed an experiment to identify the high level features of texture perception
[62][63]. Their results suggest that in human vision three perceptual features (“repetitiveness”,
“directionality”, and “granularity and complexity”) concur to describe texture appearance.
Consequently, the computational model applied in image indexing should compute features that
reflect these perceptual ones. To do so, the IBM QBIC system uses a modified version of the
features of “coarseness”, “contrast”, and “directionality” proposed by Tamura for image indexing
[76][21]. Amadusun and King have proposed another feature set that corresponds to the visual
properties of texture: “coarseness”, “contrast”, “busyness”, “complexity”, and “texture strength”
[1]. Picard and Liu, extending the work described in [24][25], have proposed an indexing scheme
based on Word Decomposition of the luminance field [44][61] in terms of "periodicity",
"directionality", and "randomness”. Wavelet transform representations, also described in Section 4,
have been proved effective for texture annotation [45].
Shape features may provide the highest level of abstraction in describing image content, but they
can not always used as they generally require that regions of interest in the images be segmented a-
priori, and, as we have said in Section 2, "good" unsupervised segmentations are not always
possible. Various approaches have been proposed in the literature for shape-based image retrieval.
According to Del Bimbo [19] these can be distinguished by whether they employ feature based
representations (both boundary based and region based) or follows shape transformation techniques.
Depending on the applications some shape representations must be invariant to translation, rotation,
and scaling, while others need not. Jain and Vailayata [36] have defined a very simple and effective
shape matching technique based on histograms of the direction of significant edges. This features is
invariant to translation and can be made invariant for scaling and rotation as well.

Mehtre et al. [52] and Scasselati et al. [68] have reviewed and reported experimental comparisons
of different methods of image retrieval based on shape similarity.

Although several general-purpose systems have been developed in the last few years, the integrated
management of the various image features remains complex and application dependent [57][60].
Several factors may intervene when choosing the aggregation operator to integrate the results of a
query based on many features [8]: different tasks in the same context deal with similarity at
different levels of precision; similarity depends greatly on the nature of the objects to which it is
applied, and on the features selected for their description; different users from different
backgrounds may interpret image content differently, and the objectives of their queries may also
differ. All these factors, which are interrelated and consequently influence each other, make it quite
impossible to determine in advance the most suitable aggregation operator for the different
similarity measures, e.g. [51]. This leaves to the users the burden of formulating their information
needs, which may be rather difficult (and tiresome) to express as a weighted combination of the
features that are actually employed for retrieval [65].
It is obvious that user feedback is a key element in the successful retrieval of multimedia
information. The potentials of relevance feedback in textual information retrieval have been widely
studied. In image retrieval, it has been employed by Minka and Picard [53] and by Cox et al. [16]
for target search, and by Rui et al. [66], La Cascia et al. [40] for similarity retrieval. Ciocca and
Schettini [14] have designed an algorithm that, through the statistical analysis of the image feature
distributions of the retrieved images the user has judged relevant or not relevant, identifies the
features the user has taken into account in formulating this judgement. It then modifies accordingly



the contribution of the different features to the overall evaluation of image similarity (see figure 13
and 14).

8 PERFORMANCE EVALUATION OF IMAGE RETRIEVAL STRATEGIES

Although there are a host of measures that can be used for evaluating retrieval strategies, in the
great majority of papers, when there was more than one relevant image in the database with respect
to a generic query, the effectiveness of the retrieval methods has been quantified in terms of recall
vs. precision graphs [42]. Recall, which is defined as the ratio between the number of relevant
images retrieved and the number of all relevant images in the database, quantifies the ability of the
system to retrieve useful images. Precision, which is defined as the ratio between the number of
relevant images retrieved and the number of retrieved images, measures the ability to reject useless
ones [56]. A measure called Effectiveness (Efficiency of Retrieval, or Fill Ratio), has been
proposed by Mehtre et al. [50]and often applied [51][52][29] for evaluating image retrieval
methods. Let S be the number of images retrieved in the short list when posing a query; I

qR , the set

of relevant images in the database; and E
qR , the set of images retrieved in the short list (considered

"relevant" by the system). The effectiveness measure is defined as:
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If S≤I
qR , the effectiveness is reduced to the traditional recall measure, while if S>I

qR , the

effectiveness corresponds to precision. This measure, however, does not take into account the
number of relevant images in the database. To overcome this drawback, the authors evaluate the
Effectiveness for different lengths of the short list S, producing an "Effectiveness vector", the
significance of which is not immediately clear.
In some application domains some images may be "more relevant than others", therefore, the
ranking of relevant images must be taken into account in the design of the performance metrics
[29]. As even all expert may find it difficult and tiresome to exactly rank the images on the basis of
similarity, a few equivalent classes of similarity can be provided (e.g. very similar, rather similar,
not-very similar and different) [29].
To quantify the performance of a retrieval strategy with a global score when there is only one
relevant image (target) in the database with respect to the query, the Success of Target Search index
(STS) can be used. This score is defined as:









−
−

−=
1

1
1

N
Rank

STS

where Rank is the retrieval position of the target image and ranges from 1 to N, N being the number
of images in the database.



Since image retrieval is often an interactive process, other performance measures can be applied
[42][56]: these may include the average number of processing stages required to achieve
satisfactory results, the computational complexity, and other, domain-specific performance indices
[19].

9 CONCLUSIONS

Color has been widely used for content-based image and video retrieval. Since the introduction
of color distributions as descriptors of image content, various research projects have addressed the
problems of color spaces, illumination invariance, color quantization, and color similarity functions.
Many different methods have been developed to enhance the limited descriptive capacity of color
distributions. We have presented here the state of the art of color-based methods that can be used to
index and retrieve color images.

The most surprising element that emerges from our study of color indexing and retrieval is that
most of the methods analyzed do not explore the problem of how to deal with color in a device-
independent way. Very seldom are details given, or references made to image acquisition and
management in terms of standard color coordinates, although it is reasonable to assume that the
image database contains images acquired from many sources, and subjected to a number of
processing steps before indexing and display. Quantization and segmentation reduce acquisition
noise, and may to some extent cope with changes in imaging conditions, but a more rigorous
approach to color imaging is surely desirable.

Several of the algorithms proposed have been designed to implement machine color constancy, but
their application in real world conditions is still under investigation. The very definition of machine
color constancy is still a matter for future research, rather than an effective tool that can be
employed in current content-based image retrieval engines.

Most color based retrieval algorithms make it possible to perform searches for the presence of
specific colors, but not, with very few exceptions [2], for their absence. Consequently, it would be
desirable to modify retrieval methods so that users can specify which colors should be excluded
from the image retrieval query.

The definition of feature similarity also plays a fundamental role in content-based retrieval, as
images with "similar" feature distributions are often considered similar in appearance without
requiring any semantic expression of this.

Most of the methods described here have been tested on different databases, of very different sizes,
ranging from 50 to 200,000 images, for different retrieval tasks. This makes it extremely difficult, if
not impossible, to provide an absolute ranking of the effectiveness of the algorithms. We can make
the general observation that color alone can not suffice to index large, heterogeneous image
databases. The combination of color with other visual features is a necessary approach that merits
further study. Much more dubious, instead, are methods that assume that affordable, unsupervised
image segmentation is always possible, and that the evaluation of image similarity can be dealt with
as a graph matching problem, with a reasonable computational burden. The design of a content-
based image retrieval system must address issues of efficiency in addition of those of effectiveness.

A promising direction for future research is, in our opinion, the exploitation of color image
similarity for image database navigation and visualization ([64] is an attempt in this direction) and
the retrieval of color images based on psychological effects [19]. We would also like to see new
generation systems that support querying by similar emotions (e. g. joy), and open-ended searches
in the image database where similar images are located next to each other.
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Figure10: Retrieval results using the first three moments of each color channel on a photo database
of about 12,000 images

Figure11: Retrieval results using histograms intersection (64 colors) on a photo database of about
12,000 images



Figure12: Retrieval results using color coherence vectors (64 colors) on a photo database of about
12,000 images

Figure13: Retrieval results using multiple features search on a photo database of about 12,000
images



Figure 14: Retrieval results using multiple features search with relevance feedback on a photo
database of about 12,000 images


