
Linux Network Tra�c Control | Implementation Overview

Werner Almesberger, EPFL ICA

Werner.Almesberger@epfl.ch

April 23, 1999

Abstract

Linux o�ers a rich set of tra�c control functions.
This document gives an overview of the design of the
respective kernel code, describes its structure, and il-
lustrates the addition of new elements by describing
a new queuing discipline.

1 Introduction

Recent Linux kernels o�er a wide variety of traf-
�c control functions. The kernel parts for tra�c
control, and several user-space programs to control
them have been implemented by Alexey Kuznetsov
<kuznet@ms2.inr.ac.ru>. That work was inspired
by the concepts described in [1], but it also covers the
mechanisms required for supporting the architecture
developed in the IETF \intserv" group [2], and will
serve as the basis for supporting the more recent work
of \di�serv" [3]. See also [4] for further details on
how intserv and di�serv are related. This document
illustrates the underlying architecture and describes
how new tra�c control functions can be added to the
Linux kernel. The kernel version we used is 2.2.6.

Figure 1 shows roughly how the kernel processes
data received from the network, and how it generates
new data to be sent on the network: incoming packets
are examined and then either directly forwarded to
the network (e.g. on a di�erent interface, if the ma-
chine is acting as a router or a bridge), or they are
passed up to higher layers in the protocol stack (e.g.
to a transport protocol like UDP or TCP) for further
processing. Those higher layers may also generate
data on their own and hand it to the lower layers

for tasks like encapsulation, routing, and eventually
transmission.

\Forwarding" includes the selection of the output
interface, the selection of the next hop, encapsulation,
etc. Once all this is done, packets are queued on the
respective output interface. This is the point where
tra�c control comes into play. Tra�c control can,
among other things, decide if packets are queued or
if they are dropped (e.g. if the queue has reached
some length limit, or if the tra�c exceeds some rate
limit), it can decide in which order packets are sent
(e.g. to give priority to certain ows), it can delay the
sending of packets (e.g. to limit the rate of outbound
tra�c), etc.

Once tra�c control has released a packet for send-
ing, the device driver picks it up and emits it on the
network.

Sections 2 to 4 give an overview and explain some
terminology. Sections 5 to 8 describe the elements
of tra�c control in the Linux kernel in more detail.
Section 9 describes a queuing discipline that has been
implemented by the author.

2 Overview

The tra�c control code in the Linux kernel consists
of the following major conceptual components:

� queuing disciplines

� classes (within a queuing discipline)

� �lters

� policing

1



Input de-multiplexing Forwarding Output queuing

Upper layers (TCP, UDP, ...)
Traffic control

Figure 1: Processing of network data.

Each network device has a queuing discipline asso-
ciated with it, which controls how packets enqueued
on that device are treated. A very simple queuing
discipline may just consist of a single queue, where
all packets are stored in the order in which they have
been enqueued, and which is emptied as fast as the
respective device can send. See �gure 2 for such a
queuing discipline without externally visible internal
structure.

Queuing discipline

Figure 2: A simple queuing discipline without classes.

More elaborate queuing disciplines may use �lters
to distinguish among di�erent classes of packets and
process each class in a speci�c way, e.g. by giving one
class priority over other classes.

Figure 3 shows an example of such a queuing dis-
cipline. Note that multiple �lters may map to the
same class.

Queuing disciplines and classes are intimately tied
together: the presence of classes and their semantics
are fundamental properties of the queuing discipline.
In contrast to that, �lters can be combined arbitrarily
with queuing disciplines and classes as long as the
queuing discipline has classes at all. But exibility
doesn't end yet { classes normally don't take care of
storing their packets themselves, but they use another
queuing discipline to take care of that. That queuing
discipline can be arbitrarily chosen from the set of
available queuing disciplines, and it may well have
classes, which in turn use queuing disciplines, etc.

Figure 4 shows an example of such a stack: �rst,
there is a queuing discipline with two delay priori-
ties. Packets which are selected by the �lter go to
the high-priority class, while all other packets go to
the low-priority class. Whenever there are packets in
the high-priority queue, they are sent before packets
in the low-priority queue (e.g. the sch_prio queu-
ing discipline works this way). In order to prevent

high-priority tra�c from starving low-priority tra�c,
we use a token bucket �lter (TBF), which enforces a
rate of at most 1 Mbps. Finally, the queuing of low-
priority packets is done by a FIFO queuing discipline.
Note that there are better ways to accomplish what
we've done here, e.g. by using class-based queuing
(CBQ) [5].

Packets are enqueued as follows: when the
enqueue function of a queuing discipline is called, it
runs one �lter after the other until one of them indi-
cates a match. It then queues the packet for the cor-
responding class, which usually means to invoke the
enqueue function of the queuing discipline \owned"
by that class. Packets which do not match any of the
�lters are typically attributed to some default class.

Typically, each class \owns" one queue, but it is in
principle also possible that several classes share the
same queue or even that a single queue is used by
all classes of the respective queuing discipline. Note
however that packets do not carry any explicit indica-
tion of which class they were attributed to. Queuing
disciplines that change per-class information when
dequeuing packets (e.g. CBQ) may therefore not
work properly if the \inner" queues are shared, un-
less they are able either to repeat the classi�cation
or to pass the classi�cation result from enqueue to
dequeue by some other means.

Usually when enqueuing packets, the correspond-
ing ow(s) can be policed, e.g. by discarding packets
which exceed a certain rate.

We will not try to introduce new terminology
to distinguish among algorithms, their implementa-
tions, and instances of such elements, but rather use
the terms queuing discipline, class, and �lter through-
out most of this document, to refer to all three levels
of abstraction at the same time.

3 Resources

Linux tra�c control is spread over a comparably large
number of �les. Note that all path names are relative
to the base directory of the respective component,

2



Filter

Filter

Filter

Class

Queuing discipline

Class Queuing discipline

Queuing discipline

Figure 3: A simple queuing discipline with multiple classes.

TBF, rate = 1 Mbps

FIFO

Queuing discipline with two delay priorities

Default

Filter "high"

"low"

Figure 4: Combination of priority, TBF, and FIFO queuing disciplines.

e.g. for the Linux kernel this is /usr/src/linux/,
for the tc program iproute2/tc/.

tc is a user-space program used to manipulate
individual tra�c control elements. Its source is
in the �le iproute2-version.tar.gz, which can be
obtained from ftp://linux.wauug.org/pub/net/

ip-routing/.

The kernel code resides mainly in the directory
net/sched/. The interfaces between kernel traf-
�c control elements and user space programs us-
ing them are declared in include/linux/pkt_cls.

h and include/linux/pkt_sched.h. Declarations
used only inside the kernel and the de�nitions of some
inline functions can be found in include/net/pkt_

cls.h and include/net/pkt_sched.h.

The rtnetlink mechanism used for communica-
tion between tra�c control elements in user-space
and in the kernel is implemented in net/core/

rtnetlink.c and include/linux/rtnetlink.h. rt-
netlink is based on netlink, which can be found in
net/netlink/ and include/linux/netlink.h.

The kernel source can be obtained from the usual
well-known places, e.g. from ftp://ftp.kernel.

org/pub/linux/kernel/v2.2/.

The example in section 9 is included in the ATM
on Linux distribution, which can be downloaded from
http://icawww1.epfl.ch/linux-atm/dist.html.

The Di�erentiated Services on Linux project

(http://icawww1.epfl.ch/linux-diffserv/) has
produced further examples for extensions of Linux
tra�c control and their use.

4 Terminology

Unfortunately, the terminology used to describe traf-
�c control elements is far from consistent in litera-
ture, and there are some variations even within Linux
tra�c control. The purpose of this section is to help
to put things into context.

Figure 5 shows the architectural models and the
terminology used in the IETF groups \intserv" [6]
and \di�serv" [7, 8], and how elements of Linux tra�c
control are related to them. Note that classes play
an ambivalent role, because they determine the �nal
outcome of a classi�cation and they can also be part
of the mechanism that implements a certain queuing
or scheduling behaviour.

Table 1 summarizes the keywords used at the tc

command line, the �le names used in the kernel (in
net/sched/), and the �le names used in the source
of tc.

3



classifier
(BA)

Classifier

Mechanism

Class

C
la

ss
if

ie
r

Filter PoliceLinux kernel

Diffserv node

Intserv node

traffic
Diffserv

conditioner

traffic control

Policing

Classifier

Packet
scheduler

dropperMarker Shaper/

Meter

Flows

(Behaviour) aggregates

Metering Queuing/scheduling

Queuing discipline

Classification

Figure 5: Relation of elements of the intserv and di�serv architecture to tra�c control in the Linux kernel.

4



Element tc keyword File name pre�x
Kernel tc

Queuing discipline qdisc sch_ q_

Class class (sch_) (q_)
Filter filter cls_ f_

Table 1: Keywords and �le names used for tra�c control elements.

5 Queuing disciplines

Each queuing discipline provides the following
set of functions to control its operation (see
struct Qdisc_ops in include/net/pkt_sched.h):

enqueue enqueues a packet with the queuing disci-
pline. If the queuing discipline has classes, the
enqueue function �rst selects a class and then in-
vokes the enqueue function of the corresponding
queuing discipline for further enqueuing.

dequeue returns the next packet eligible for send-
ing. If the queuing discipline has no packets to
send (e.g. because the queue is empty or because
they're not scheduled to be sent yet), dequeue
returns NULL.

requeue puts a packet back into the queue after
dequeuing it with dequeue. This di�ers from
enqueue in that the packet should be queued
at exactly the place from which it was removed
by dequeue, and that it should not be included
in the statistics of cumulative tra�c that has
passed the queue, because that was already done
in the enqueue function.

drop drops one packet from the queue.

init initializes and con�gures the queuing discipline.

change changes the con�guration of a queuing disci-
pline.

reset returns the queuing discipline to its initial
state. All queues are cleared, timers are stopped,
etc. Also, the reset functions of all queuing dis-
ciplines associated with classes of this queuing
discipline are invoked.

destroy removes a queuing discipline. It removes
all classes and possibly also all �lters, cancels all
pending events and returns all resources held by
the queuing discipline (except for the data struc-
ture describing the queuing discipline itself).

dump returns diagnostic data used for maintenance.
Typically, the dump functions returns all su�-
ciently important con�guration and state vari-
ables.

For all these functions, queuing disciplines are usu-
ally referenced by a pointer to the corresponding
struct Qdisc.

When a packet is enqueued on an interface (dev_
queue_xmit in net/core/dev.c), the enqueue func-
tion of the device's queuing discipline (�eld qdisc of
struct device in include/linux/netdevice.c) is
invoked. Afterwards, dev_queue_xmit calls qdisc_
wakeup in include/net/pkt_sched.h on that device
to try sending the packet that was just enqueued.

qdisc_wakeup immediately calls qdisc_restart

in net/sched/sch_generic.c, which is the main
function to poll queuing disciplines and to send pack-
ets. qdisc_restart�rst tries to obtain a packet from
the queuing discipline of the device, and if it succeeds,
it invokes the device's hard_start_xmit function to
actually send the packet. If sending fails for some rea-
son, the packet is returned to the queuing discipline
via its requeue function.

qdisc_wakeup can also be invoked by a queuing
discipline when that queuing discipline notices that
a packet may be due for sending, e.g. on expiration
of a timer. TBF is an example of such a queuing
discipline. qdisc_restart is also called via qdisc_

run_queues from net_bh in net/core/dev.c. net_
bh is the \bottom-half" handler of the networking
stack and is executed whenever packets have been
queued up for further processing.

Figure 6 illustrates the procedure. For simplicity,
calls made by the queuing discipline (e.g. for classi-
�cation) are not shown.

Note that queuing disciplines never make direct
calls to delivery functions. Instead, they have to wait
until they are polled.

If a queuing discipline is compiled into the the ker-
nel, it should be registered by pktsched_init in net/
sched/sch_api.c. Alternatively, is can also be regis-
tered from some other place using register_qdisc,
e.g. from the init_module function if the queuing

5



qdisc_restart

qdisc_wakeup

_dequeueqdisc

hard_start_xmit

_enqueueqdisc

dev_queue_xmit

net_bh

Timer

qdisc_run_queues

Figure 6: Functions called when enqueuing and send-
ing packets.

discipline is compiled as a module.

When creating or changing an instance of
a queuing discipline, a vector of options (type
struct rtattr *, declared in include/linux/

rtnetlink.h) is passed to the init function. Each
option is encoded with its type, the length of the
value, and the value (i.e. zero or more data bytes).
Option types and the data structures used for values
are declared in include/linux/pkt_sched.h. The
option vector is parsed by calling rtattr_parse,
which returns an array of pointers to the individual
elements, indexed by the option type. The length and
content of an option can be accessed via the macros
RTA_PAYLOAD and RTA_DATA, respectively.

Option vectors are passed between user-space pro-
grams and the kernel using the rtnetlink mechanism.
Explaining rtnetlink and the underlying netlink is be-
yond the scope of this paper. The location of the
respective source �les is described in section 3.

Instances of queuing disciplines are identi�ed by
32-bit numbers, which are split into a major and a
minor number. The usual notation is major:minor.
For queuing disciplines, the minor number is always
zero. Note that these major and minor numbers are
not related to the numbers used for device special
�les.

6 Classes

Classes can be identi�ed in two ways: (1) by the class
ID, which is assigned by the user, and (2) by the in-
ternal ID, which is assigned by the queuing discipline.
The latter has to be unique within a given queuing
discipline and may be an index, a pointer, etc. Note
that the value 0 is special and means \not found"
when returned by get. The class ID is of type u32,
while the internal ID is of type unsigned long. In-
side the kernel, the usual way to refer to a class is by
its internal ID. Only get and change use the class ID
instead.

Note that multiple class IDs may map to the same
internal class ID. In this case, the class ID conveys
additional information from the classi�er to the queu-
ing discipline or class.

Class IDs are structured like queuing discipline
IDs, with the major number corresponding to their
instance of the queuing discipline, and the minor
number identifying the class within that instance.

Queuing disciplines with classes provide the
following set of functions to manipulate classes
(see struct Qdisc_class_ops in include/net/

pkt_sched.h):

graft attaches a new queuing discipline to a class
and returns the previously used queuing disci-
pline.

leaf returns the queuing discipline of a class.

get looks up a class by its class ID and returns the
internal ID. If the class maintains a usage count,
get should increment it.

put is invoked whenever a class that was previously
referenced with get is dereferenced. If the class
maintains a usage count, put should decrement
it. If the usage count reaches zero, put may re-
move the class.

change changes the properties of a class. change is
also used to create new classes, where applica-
ble { some queuing disciplines have a constant
number of classes which are created when the
queuing discipline is initialized.

delete handles requests to delete a class. It checks
if the class is not in use, and de-activates and
removes it in this case.

walk iterates over all classes of a queuing discipline
and invokes a callback function for each of them.
This is used to obtain diagnostic data for all
classes of a queuing discipline.

6



tcf_chain returns a pointer to the anchor of the list
of �lters associated with a class. This is used to
manipulate the �lter list.

bind_tcf binds an instance of a �lter to the class.
bind_tcf is usually identical to get, except
when the queuing discipline needs to be able to
explicitly refuse class deletion. (E.g. sch_cbq re-
fuses to delete classes while they are referenced
by �lters.)

unbind_tcf removes an instance of a �lter from the
class. unbind_tcf is usually identical to put.

dump_class returns diagnostic data, like dump does
for queuing disciplines.

Classes are selected in the enqueue function
of the queuing discipline usually by invoking tc_

classify in include/net/pkt_cls.h, which returns
a struct tcf_result (in include/net/pkt_cls.h)
containing the class ID (classid) and possibly also
the internal ID (class), see section 7. The re-
turn value of tc_classify is either �1 (TC_POLICE_
UNSPEC) or the policing decision returned by the �l-
ter (see section 8). The return values of tc_classify
are declared in include/linux/pkt_cls.h.

There is also a shortcut for classi�cation of lo-
cally generated tra�c: if skb->priority contains
the ID of a class of the current queuing discipline,
that class is used and no further classi�cation is
attempted. skb->priority (struct sk_buff in
include/linux/skbuff.h) is set to sk->priority

(struct sock in include/net/sock.h) when locally
generating a packet. sk->priority can be set with
the SO_PRIORITY socket option (sock_setsockopt in
net/core/sock.c). This type of classi�cation can
be useful for implementing functionality like the one
provided by Arequipa [9].

Note that kernels up to at least 2.2.3 limit the
value that can be set with SO_PRIORITY to the range
0 : : : 7, so that this shortcut classi�cation does not
work. However, all queuing disciplines support it.
Also note that skb->priority can contain other pri-
ority values, e.g. the priority obtained from the TOS
byte of the IPv4 header. All such values are below
the smallest valid class number, 65536.

After selecting the class, the enqueue function of
the respective inner queuing discipline is invoked.
The way how this queuing discipline is stored in the
data structure(s) associated with the class can vary
among queuing discipline implementations.

The option vector passed to the change function
is of the same structure as the vectors passed to

the init functions of queuing disciplines. The cor-
responding declarations are also in include/linux/

pkt_sched.h.

7 Filters

Filters are used by a queuing discipline to assign in-
coming packets to one of its classes. This happens
during the enqueue operation of the queuing disci-
pline.

Element handle=X

Element handle=Y

Qdisc/class

Filter prio=1 Filter prio=2

Figure 7: Structure of �lters, with a list of elements
belonging to the �rst �lter, and no internal structure
for the second �lter.

Filters are kept in �lter lists which can be main-
tained per queuing discipline or per class, depend-
ing on the design of the queuing discipline. Fil-
ter lists are ordered by priority, in ascending order.
Furthermore, the entries are keyed by the protocol
for which they apply. Those protocol numbers are
also used in skb->protocol and they are de�ned in
include/linux/if_ether.h. Filters for the same
protocol on the same �lter list must have di�erent
priorities.

A �lter may also have an internal structure: it
may control internal elements, which are then refer-
enced by 32-bit handles. These handles are similar to
class IDs, but they are not split into major and minor
numbers. Handle 0 always refers to the �lter itself.
Like classes, also �lters have internal IDs, which are
obtained with the get function. The internal organi-
zation of a �lter can be arbitrary. Figure 7 shows a
�lter with a list of internal elements.

Figure 8 shows the order in which �lters and their
elements can be examined. A linked list that is pro-
cessed sequentially is of course only one of many pos-
sible internal structures of a �lter.

7



Filter Filter

E

E

E

E

No match

Match

UNSPECOK

Figure 8: Looking for a match.

Filters are controlled via the following functions
(see struct tcf_proto_ops in include/net/pkt_

cls.h):

classify performs the classi�cation and returns one
of the TC_POLICE_: : : values described in section
8. If the result is not TC_POLICE_UNSPEC, it also
returns the selected class ID and optionally also
the internal class ID in the struct tcf_result

pointed to by res. If the internal class ID is
omitted, the value zero must be stored in res->

class.

init initializes the �lter.

destroy is invoked to remove a �lter. Also the
queuing disciplines sch_cbq and sch_atm use
destroy to remove stale �lters when deleting
classes. If the �lter or any of its elements were
registered with classes, these registrations are
canceled by calling unbind_tcf.

get looks up a �lter element by its handle and re-
turns the internal �lter ID.

put is invoked when a �lter element previously ref-
erenced with get is no longer used.

change con�gures a new �lter or changes the proper-
ties of an existing �lter. Con�guration parame-
ters are passed with the same mechanism as used

for queuing disciplines and classes. change reg-
isters the addition of a new �lter or �lter element
to a class by calling bind_tcf.

delete deletes an element of a �lter. To delete the
entire �lter, destroy has to be used. This dis-
tinction is transparent to the user and is made
in net/sched/cls_api:tc_ctl_tfilter. If the
�lter element was registered with a class, that
registration is canceled by calling unbind_tcf.

walk iterates over all elements of a �lter and invokes
a callback function for each of them. This is used
to obtain diagnostic data.

dump returns diagnostic data for a �lter or one of its
elements.

Note that the code for the RSVP �lters is in
cls_rsvp.h. cls_rsvp.c and cls_rsvp6.c only
contain the right set of includes and set some pa-
rameters (mainly RSVP_DST_LEN), which control the
type of �lter generated from cls_rsvp.h.

filter_classify

Q
ue

ui
ng

 d
is

ci
pl

in
e

x:0

Se
ar

ch
0

tcf_result

x:y

class

classid

x:a

x:b

x:y

...

Packet content

Classes

skb

Figure 9: Generic �lter.

Filters vary in the scope of packets their instances
can classify: When using the cls_fw and cls_route

�lters, one instance per queuing discipline can classify
packets for all classes. Those �lters take the class
ID from the packet descriptor, where it was stored
before by some other entity in the protocol stack,
e.g. cls_fw uses the marking functionality of the
�rewall code. We call such �lters generic. They are
illustrated in �gure 9.

8



filter_classify
Q

ue
ui

ng
 d

is
ci

pl
in

e

x:0

tcf_result

x:y
class
classid

Filter can use all packet information

x:a

x:b

x:y

...

Classes

Packet content

Fi
lte

rs

Se
ar

ch
skb

Figure 10: Speci�c �lter, with a pointer to the class
used as the internal class ID.

The other type of �lters (cls_rsvp and cls_u32)
needs one or more instances of the �lter or its inter-
nal elements per class. We call such �lters speci�c.
Multiple instances of such a �lter (or its elements) on
the same �lter list (e.g. for the same class) are dis-
tinguished by an internal �lter ID, which is similar
to the internal ID used for classes. However, unlike
classes, �lters have no \�lter ID". Instead, they are
identi�ed by the queuing discipline or class for which
they are registered, and their priority among the �l-
ters there.

Because speci�c �lters have at least one instance
or element per class, they can of course store the
internal ID of that class and provide it as a result
of classi�cation. This then allows quick retrieval of
class information by the queuing discipline. Figure
10 illustrates this scenario, where a pointer to the
class structure is used as the internal ID. Unfortu-
nately, generic �lters have no means to provide this
information. Therefore, they set the class �eld in
struct tcf_result to zero and leave the lookup op-
eration to the queuing discipline.

Starting with kernel version 2.2.5, also the generic
�lters cls_fw cls_route can become speci�c �l-

ters. This con�guration change happens automati-
cally when explicitly binding classes to them.

8 Policing

The purpose of policing is to ensure that tra�c does
not exceed certain bounds. For simplicity, we will
assume a broad de�nition of policing and consider it
to comprise all kinds of tra�c control actions that
depend in some way on the tra�c volume.

We consider four types of policing mechanisms: (1)
policing decisions by �lters, (2) refusal to enqueue
a packet, (3) dropping of a packet from an \inner"
queuing discipline, and (4) dropping of a packet when
enqueuing a new one. Figures 11 to 15 illustrate the
four mechanisms.

The �rst type of actions are decisions taken by
�lters (�gure 11). The classify function of a �lter
can return three types of values to indicate a policy
decision (the values are declared in include/linux/

pkt_cls.h:

TC_POLICE_OK No special treatment requested.

TC_POLICE_RECLASSIFY Packet was selected by �lter
but it exceeds certain bounds and should be re-
classi�ed (see below).

TC_POLICE_SHOT Packet was selected by �lter and
found to violate the bounds such that it should
be discarded.

Currently, the �lters cls_rsvp, cls_rsvp6, and
cls_u32 support policing. The policing informa-
tion is returned via tc_classify (in include/net/

pkt_cls.h) to the enqueue function of the queu-
ing discipline. It is then up to the queuing disci-
pline to take an appropriate action. The queuing
disciplines sch_cbq and sch_atm handle TC_POLICE_
RECLASSIFY and TC_POLICE_SHOT. The sch_prio

queuing discipline ignores any policing information
returned by tc_classify.

Filters can use the function tcf_police (in
net/sched/police.c) to determine if the ow
they select conforms to a token bucket. The
bucket parameters (declared in struct tc_police

in include/linux/pkt_cls.h and later on stored
in struct tcf_police in include/net/pkt_sched.

h) are roughly the same as for TBF: maximum
packet size (mtu), average rate (rate), peak rate
(peakrate), and bucket size (burst). The �eld
action contains the policy decision code returned
when accepting the packet would exceed the limits. If

9



filter2_classify

filter1_classify

if OK

if UNSPEC,RECLASSIFY

UNSPEC,SHOTif 

high_enqueue

low_enqueueouter_enqueue

tc_classify

UNSPEC

OK,RECLASSIFY,SHOT

UNSPEC,OK,RECLASSIFY,SHOT

kfree_skb

discipline
Queuing

Filter(s)

Figure 11: Policing when enqueuing; decision taken by �lter.

the packet can be accepted, tcf_police updates the
meter and returns the decision code stored in result.

If no matching �lter was found, tc_classify re-
turns TC_POLICE_UNSPEC. In this case, a queuing
discipline will typically either discard the packet or
treat it with low priority.

Sometimes, it is desirable to police tra�c with re-
spect to more than a single token bucket, e.g. to par-
tition tra�c into \low", \high", and \excess" packets.
In order to build such con�gurations, multiple polic-
ing functions need to be consulted. To accomplish
this, tcf_police returns TC_POLICE_UNSPEC, upon
which the �lter proceeds with the next element, or,
if the current �lter has no more eligible elements, the
next �lter is invoked. An example of such a con�gu-
ration is given in [10].

Figure 12 illustrates how the matching process
changes when policing is involved.

The second type of policing occurs when a queu-
ing discipline fails to enqueue a packet (�gure 13).
In this case, it normally simply discards the packet
(i.e. by calling kfree_skb). Some queuing disciplines
also provide more sophisticated feedback to the call-
ing queuing discipline and give it a second chance for
enqueuing the packet: if the reshape_fail callback
function has been set (in struct Qdisc), the \inner"
queuing discipline may invoke it instead to allow the
\outer" queuing discipline to select a di�erent class.
If reshape_fail is not set or if it returns a non-
zero value, the packet must be discarded. Currently,
only sch_cbq provides a reshape_fail function.

sch_fifo and sch_tbf make calls to reshape_fail,
if available.

The third policing mechanism is applied if a queu-
ing discipline decides to drop a packet from an \in-
ner" queuing discipline after that packet was en-
queued, e.g. in order to create space for packets of a
more important class (�gure 14). This is done using
the drop function. The cbq_dequeue_prio function
of sch_cbq uses this via cbq_under_limit to remove
packets from classes which are over limit.

Also the fourth mechanism (�gure 15) discards
packets that have already been successfully enqueued:
if the enqueue function of a queuing discipline con-
siders a new packet to be more important than some
older one, it can discard the old packet and enqueue
the new one instead. It indicates this to the caller by
returning zero.

9 The sch atm queuing disci-

pline

As an example of how new tra�c control elements
can be added, we examine the ATM queuing disci-
pline in more detail. It is used to re-direct ows from
the default path (e.g. through a given interface) to
ATM VCs. Each ow can have its own ATM VC, but
multiple ows can also share the same VC. Figure 16
illustrates the structure of this queuing discipline.

While its classi�cation and queuing part is fairly
generic, the ATM queuing discipline di�ers from

10



Filter Class Queuing discipline

ATM VC

ATM VC

ATM queuing discipline

Default

Filter Class Queuing discipline

Filter Class Queuing discipline

Queuing discipline

Figure 16: The ATM queuing discipline.

Add

Filter Filter

E

E

E

E

OK or policing action UNSPEC

Policer

Rate OK?

result action

Y N
Match, 

No match or
UNSPEC

policing action
OK, or

Figure 12: Looking for a match, with policing.

other queuing disciplines in that packets enqueued
on it may leave via other paths than through
the dequeue function or being dropped: whenever
dequeue is called, it �rst checks all inner queuing dis-
ciplines for packets to send, and sends them over the
respective ATM VCs. After that, it returns what-
ever it gets from the default queue, which receives
the packets that don't get attributed to any of the
classes.

In order to prevent VCs from being removed while

inner _enqueue

outer _enqueue outer _reclassify

Successfully enqueued

"Outer" queuing discipline

"Inner" queuing discipline

kfree_skb

!= NULL
sch->reshape_failif 

if sch->reshape_fail
== NULL

Figure 13: Policing when enqueuing; decision taken
by \inner" queuing discipline.

the queuing discipline is still using them, the refer-
ence count of the corresponding socket is increased
when attaching a VC to a class of the ATM queu-
ing discipline. This happens in the function sockfd_

lookup in net/socket.c which atm_tc_change calls
to translate the socket descriptor number to a pointer
to the socket structure. When the class is removed,
it returns the socket using sockfd_put, which then
decrements the reference count. This pair of func-
tions performs roughly the equivalent of fdopen and
close.

The ATM queuing discipline supports the polic-
ing responses TC_POLICE_SHOT and TC_POLICE_

RECLASSIFY. The latter can be handled in two di�er-
ent ways: (1) by assigning the packet to a new class
(as con�gured by the user), or (2) by setting the cell
loss priority bit in outgoing ATM cells.

11



outer_enqueue

inner_enqueue

outer_...

inner_drop

later ...

"Outer" queuing discipline

"Inner" queuing discipline

Figure 14: Policing after enqueuing; decision taken
by \outer" queuing discipline.

outer_enqueue

inner_enqueue inner_enqueue

outer_enqueue

"Outer" queuing discipline

later ...

"Inner" queuing discipline

Figure 15: Older packet is discarded to make room
for new packet.

The code of the ATM queuing discipline is in
net/sched/sch_atm.c. In addition to that �le,
include/linux/pkt_sched.h contains the option
types (pre�x TCA_ATM_), and net/sched/sch_api.c

contains the initialization. Furthermore, the usual
changes had to be made to net/sched/Config.in

and net/sched/Makefile to include the new queu-
ing discipline in the con�guration and build process.

The use of the ATM queuing discipline is described
in the �le atm/extra/tc/README in the ATM on
Linux distribution.

10 Conclusion

Linux tra�c control consists of a large variety of ele-
ments, which interact with each other in many ways.
The modular approach chosen results in a very versa-

tile design that can be readily applied to most current
tra�c control tasks, and which can be easily extended
to accommodate less typical applications, such as the
link-layer selection implemented in the ATM queuing
discipline. It also forms the basis for the Linux imple-
mentation of Di�erentiated Services, which unify and
advance many of the existing tra�c control concepts.

We have described queuing disciplines, classes, �l-
ters, and elements within �lters, we have illustrated
the most important interactions between these com-
ponents, and we have briey introduced the design of
a new queuing discipline. We hope this information
to be useful for people aiming to understand the in-
ner workings of Linux tra�c control, and in particular
also to implementors of new tra�c control functions.

11 Acknowledgements

The author would like to thank Jamal Hadi Salim
for very helpful discussions and suggestions on this
paper, and Alexey Kuznetsov for a critical review and
for explaining many of his design decisions and the
deeper details of tra�c control.

References

[1] Clark, David D.; Shenker, Scott; Zhang, Lixia.
Supporting Real-Time Applications in an Inte-
grated Services Packet Network: Architecture
and Mechanism, Proceedings of SigComm'92,
Baltimore, MD, August 1992. http://ana-www.
lcs.mit.edu/anaweb/ps-papers/csz.ps

[2] IETF, Integrated Services (intserv) working
group. http://www.ietf.org/html.charters/
intserv-charter.html

[3] IETF, Di�erentiated Services (di�serv) working
group. http://www.ietf.org/html.charters/
diffserv-charter.html

[4] Bernet, Yoram; Yavatkar, Raj; Ford, Pe-
ter; Baker, Fred; Zhang, Lixia; Nichols,
Kathleen; Speer, Michael; Braden, Bob. In-
teroperation of RSVP/Int-Serv and Di�-Serv
Networks (work in progress), Internet Draft
draft-ietf-diffserv-rsvp-02.txt, Febru-
ary 1999.

[5] Floyd, Sally; Jacobson, Van. Link-sharing and
Resource Management Models for Packet Net-
works, IEEE/ACMTransactions on Networking,
Vol. 3 No. 4, pp. 365-386, August 1995.

12



[6] RFC2205; Braden, Bob (Ed.); Zhang, Lixia;
Berson, Steve; Herzog, Shai; Jamin, Sugih. Re-
source ReSerVation Protocol (RSVP) { Ver-
sion 1 Functional Speci�cation, IETF, Septem-
ber 1997.

[7] RFC2474; Nichols, Kathleen; Blake, Steven;
Baker, Fred; Black, David. De�nition of the Dif-
ferentiated Services Field (DS Field) in the IPv4
and IPv6 Headers, IETF, December 1998.

[8] RFC2475; Blake, Steven; Black, David; Carlson,
Mark; Davies, Elwyn; Wang, Zheng; Weiss, Wal-
ter. An Architecture for Di�erentiated Services,
IETF, December 1998.

[9] RFC2170; Almesberger, Werner; Le Boudec,
Jean-Yves; Oechslin, Philippe. Application RE-
Quested IP over ATM (AREQUIPA), IETF,
July 1997.

[10] Almesberger, Werner; Hadi Salim, Jamal;
Kuznetsov, Alexey. Di�erentiated Services
on Linux (work in progress), Internet Draft
draft-almesberger-wajhak-diffserv-linux-01.

txt, May 1999.

13


