
 1

Adaptive Admission Control in Real Time Systems

André Filipe dos Santos Ferreira1,2, Solange Rito Lima 2

1Portugal Telecom Inovação, SA, 3810-1/6 Aveiro, Portugal
2Departamento de Informática, Universidade do Minho, 4710-057 Braga, Portugal

Abstract — In real-time service provisioning platforms the

existence of an efficient and flexible admission control
mechanism is essential for providing quality of service in a
reliable and stable way, avoiding congestion scenarios caused by
indiscriminate and uncontrolled service request admission. The
capability of modeling and regulating the rate of call acceptance,
and provide service differentiation allow indirect control of the
load submitted to the platform. This paper presents a service
differentiated admission control solution that allows to limit and
modulate the rate by which service requests are submitted into a
service provisioning platform. The solution is focused on
providing a fair level of bandwidth sharing among service
classes, in a configurable and dynamic way so that it can adapt
the distribution by which service requests are served. To sustain
the design decisions of our solution, major scheduling disciplines
and rate control mechanisms, some of them proposed recently,
are studied and compared. The solution was submitted to unit
and charge tests, whose results show its effectiveness and
robustness.

Index Terms — Admission Control, Quality of Service,
Scheduling, Service Differentiation.

I. INTRODUCTION
he communication process between clients and service
provisioning platforms is commonly supported by service

requests and responses. The client submits its request to the
platform and awaits the respective response, which is returned
once the service is satisfied. This communication is carried
through interfaces that receive the requests and invoke the
respective services provided by the platform.

Service provisioning requests have an online profile that
raises the need of attending requests within a short period of
time. If requests are submitted into the platform without
limiting and controlling its rate of admission, may occur
periods where large bursts of requests are accepted
consecutively, as well as moments where the arrival of
requests has a very low rate. This latter situation could be used
to admit requests that could not be accepted under previous
scenarios of congestion.

The execution of requests inevitably consumes memory and
processing resources, more or less severely depending on the
type of operations necessary to fulfill the services that they
claim. This may induce high levels of load into the platform,
leading to system congestion and to the retention of too many
resources. In the most critical periods, when a large and
unsustainable number of requests need to be satisfied, a point
of rupture can be reached, making the provision of services
unavailable at all. At such point, available resources are not
sufficient to satisfy the amount of requests to process.

Another issue that should be taken into account is the order
by which applications are admitted into the platform. In this
context, it is useful to give priority to more critical services.

The concept of service class allows a more efficient service
differentiation process by reducing the number of levels to
differentiate. Thus, services that require a similar treatment
can be aggregated into the same service class, so that they can
be treated according to its profile.

Thus, the motivation of this paper is to present a service
differentiated admission control solution that allows the
limitation and modulation of the rate by which service
requests are submitted into a service provisioning platform.

The solution, developed in Java EE, was implemented at
application level into an interface of a service provisioning
platform, using recent traffic control approaches.

This paper is organized as follows: a study of relevant rate
control methods, bandwidth allocation policies and scheduling
disciplines is presented in Section II; the specification of the
developed solution, including its design goals and main
features are provided in Section III; relevant tests and results
are presented in Section IV; and finally, the main conclusions
are summarized in Section V.

II. STATE OF THE ART
A differentiated admission control process is accomplished

through several tasks, such as rate control, bandwidth
management and scheduling disciplines. It is important to
select a suitable method for each one of these tasks, in order to
improve the global efficiency. The following topics present
and compare some of the most relevant methods sustaining the
deign decisions of the proposed solution.

A. Rate Control
A rate control mechanism controls the pace at which

requests are submitted into the platform, shaping it so that the
rate is limited to the desired granularity. These mechanisms
usually rely on the use of queues to make temporary storage of
service requests, when the limit rate is exceeded, minimizing
the discard of residual requests that couldn’t be attended at
their arrival. The admission of such requests is carried out
when the rate drops below the maximum allowed rate.

A simple method to limit the rate is based on the Leaky
Bucket. In this method, the service requests are transmitted
through a queue, called bucket. The requests arrive to the
bucket at an undefined rate, and are processed at a specific
rigid rate in arrival order. Requests that arrive when the queue
is full are usually discarded. Although this algorithm can
effectively limit the rate at which requests are sent, it is
inefficient in cases where the rate limit is rarely reached. If no
information is received during a certain period of time, the
unused bandwidth cannot be used for future transmissions.

A more flexible method is Token Bucket, which has a similar
philosophy to Leaky Bucket, supporting a more flexible rate
regulation by allowing the admission of bursts of requests.
This method performs admission through the consumption of

T

 2

credit units, called tokens. Usually, the admission of each
request consumes a token. The admission rate is therefore
determined by the rate at which tokens are added to the
bucket. When it becomes empty the admission process idles
until new tokens are added. The size of allowed bursts
depends on the size of the bucket, i.e., on the maximum
number of tokens that can be added to the bucket. Due to its
properties, the Token Bucket algorithm is the strategy
proposed for controlling the rate of admission control.

B. Bandwidth Management
In admission control it is important to deal with the

simultaneous arrival of service requests that results in
contention. A scheduling discipline can reduce the problem of
contention by deciding the order as the information sources
are attended. Since the scheduler cannot transmit multiple
requests simultaneously, the transmission is made iteratively
over existing queues.

Most of the scheduling disciplines are work-conservative.
The scheduler only idles when all queues became inactive,
improving bandwidth utilization over time [4].

The ability to transmit different flows at distinct rates allows
differentiating the amount of bandwidth used by each service
type over time. However, this feature requires a fair allocation
of resources while guaranteeing a good level of performance.
It is necessary to ensure that each flow does not remain
without being served during an indefinite period of time.
Badly behaved flows, with large bursts, tend to consume high
quantities of bandwidth, preventing the service of well
behaved flows whose traffic profile does not exceed the
expected rate. A common bandwidth management policy to
avoid this is Max-min, which allows a fair allocation of
bandwidth by distributing the available resources for all the
flows in a fair mode. Only if there is bandwidth surplus from
well-behaved flows, it will be shared between dissatisfied
flows. Thus, the bandwidth is allocated to flows in ascending
order, starting with lower rate flows, ensuring that a badly
behaved flow does not exceed its allocated bandwidth nor
affects well behaved flows. Thus, this process grants fairness
among all flows over time. This fairness strategy is used with
more or less severity by fair scheduling disciplines.

Other bandwidth allocation approach aims at optimizing
flows throughput. In this perspective is assumed that each
flow rate is below line capacity. The scheduler needs to know
the load level of the queues and the conditions of the channel,
but does not need to know the total capacity of the channel
and each flow rate [5]. In [6], it is shown that resource
allocation done in order to maximize the rate of admission can
be a stable policy. This policy tries to maximize each flow’s
throughput, although it may compromise fairness between
flows, which is unacceptable in most scenarios since it tends
to degrade the quality of service as a whole.

Proportional Fairness  [7] is focused on providing both
fairness and throughput maximization. The bandwidth is
distributed in order to deliver similar cost to all flows, or
minimize the maximum cost. Thus, this policy aims to
optimize the throughput and achieve better use of bandwidth.
C. Scheduling Disciplines

The most basic scheduling discipline is FCFS (First-Come
First-Served), or FIFO (First-In First-Out), where elements are
served according to their order arrival, This discipline neither

support service differentiation nor provides fairness
guarantees. It is normally used in situations where the sources
of information can perform all the congestion treatment.

The GPS (Generalized Processor Sharing) model [17] is a
theoretical scheduling discipline that serves infinitesimal
flows according to Max-min criterion. The service is
performed in a continuous and parallel mode, with perfect
fairness over time. This algorithm allows allocating different
bandwidth levels among active flows. GPS uses a queue for
each flow. For N active queues, their flows are served
simultaneously, being guaranteed to each one a ratio of at least
1/N of the total bandwidth capacity.

The GPS model is used as a comparative model to measure
the performance of other scheduling disciplines because it is a
reference model of fairness, although not implementable. It is
the infinitesimal nature of this discipline, where flows are
considered to be contiguous streams of information infinitely
divisible that makes it impossible to implement.

Implementable models serve only one queue at a time,
iteratively, which makes difficult to keep fairness over time.
Thus, fair scheduling disciplines try to get as close as possible
to the GPS model.

The RR (Round-Robin) scheduling discipline is an attempt
to deal with N flows fairly, guaranteeing a rate of 1/N for each
flow. When combined with a congestion control mechanism,
and fixed size packets, RR is considered the simplest method
for achieving fairness in scheduling [8]. However, despite the
bandwidth guarantee to all active queues, this discipline is not
adaptive. Traditionally, the behavior of RR consists in a static
cyclic service, serving one packet per active flow. This assures
the service of each active flow, being impossible the
occurrence of denial of resources that could lead to starvation
[9]. However, the service of variable size packets penalizes
queues that have a higher proportion of small packets.

Disciplines based in RR usually have low time complexity,
especially advantageous when computing resources are scarce.

The WRR (Weighted Round Robin) discipline applies the
principles of RR, adding the capability of allocating weights to
each queue, for a proportional share of resources. This feature
approaches WRR fairness closer to GPS than RR.

WRR establishes the quantity of packets served for each
active queue, uniformly and proportionally to the defined
weights. The service is cyclic and static over time. For fixed
size packets, several packets are served consecutively so that
the weights defined for each queue are accomplished. For
variable packet size, the weight is normalized according to the
relation between the average packet size and the static weight.
However, it is necessary to know each queue average packet
size, which is problematic and in short term may lead to
unfairness. In addition, there is a compromise between
flexibility and delay, since large weight variations increase the
delay that packets suffer in worst case scenarios [10].

A RR variant is DRR (Deficit Round Robin) algorithm [11].
It uses the principles of WRR, adding the capability of
handling variable size packets without considering their
average size, i.e., using a counter called deficit counter. Thus,
if a queue has a deficit counter value greater or equal to the
size of the packet, then the packet is served, and the counter is
updated according to its difference with the served packet size.
This discipline is a better approximation to GPS model than
RR and WRR.

 3

Proposed in [12], the algorithm Fair Queue (FQ) is a non-
infinitesimal scheduling discipline that aims to approach GPS
model. Unlike FCFS, where a flow can consume large
amounts of bandwidth, FQ discipline serves in a proportional
manner. This policy has the concept of associating a queue per
flow, avoiding bandwidth monopolization, which may cause
starvation to other flows.

The service is accomplished considering the packet size and
distinguishing the different flows. If a flow does not require all
the bandwidth he is entitled for, the residual bandwidth is
shared fairly among active flows that require it. For each
packet FQ computes a start and finish virtual time function,
being the packets served according to the order of finish
virtual time. The finish virtual time is the sum of the star
virtual time to the GPS time of transmission of the packet. The
main advantage of FQ is to protect well-behaved flows against
bad-behaved ones, providing a good level of fairness.
However, FQ does not assign weights in order to distinguish
flows costs, not providing differentiation. This algorithm also
has the disadvantage of requiring complex computation of
virtual time functions at the arrival of each packet.

In order to cross the need of the average packet size,
algorithms PGPS (Packet-by-Packet GPS) [10] and WFQ
(Weighted Fair Queuing) [13] have been proposed. The
disciplines are identical, but have been presented
independently. The main idea of these disciplines is to match
the computation of each packet virtual finish time to a GPS
system. Thus, they represent a good approximation to GPS.

These disciplines have all the advantages of FQ, with the
advantage of associating weights to the queues. This allows
the regulation of the number of packets served by each queue
[10]. The algorithm computes a finish virtual time function for
each arrived packet, which determines the service time. The
virtual time function is calculated according to the bandwidth,
the weight of the queue, the size of packets and an indicator
that represents the number of rounds served. The round time
and the packets’ delay increase with the number of active
sessions [10]. The method for virtual time computation
enables WFQ to achieve a good approximation to GPS model.
However, part of the high complexity of WFQ results from the
computation of a virtual time function that uses the time
identifier that each packet would have in GPS model.
Compared with WRR, which also associate weights to queues,
WFQ performs a more efficient management. As exemplified
in [10], in the worst case, the PGPS algorithm is closer to GPS
than the WRR algorithm.

In [14], it is shown that the WFQ algorithm can serve more
packets than GPS. Although the WFQ can serve packets faster
than the ideal GPS, it fails the supposed scheduling efficiency.
However in WF2Q (Worst Case Fair Weight Fair Queuing) is
guaranteed that the amount of served information never
exceeds the one served in GPS model. W2FQ assures the same
level of fairness and delay guarantees as WFQ, and it was
developed to address the fact that the WFQ is not as close to
GPS as expected [14]. W2FQ grants fairness even in worst
case scenarios. This is proved through the worst case fair
index, which is a metric that measures the discrepancy
between a discrete iterative scheduling model and idealistic
infinitesimal GPS model. The disadvantages of W2FQ are
that, as the WFQ algorithm, the time complexity is high due to
the iterative computation of complex virtual time functions.

In an attempt to reduce the complexity that characterizes
WFQ and W2FQ algorithms, while maintaining its properties,
the algorithm SCFQ was proposed in [15]. The operation of
this algorithm is similar to the WFQ, however, virtual finish
time is computed considering a time tag related to the last
served packet. The packet is then inserted into a queue and
waits for service, and like WFQ the scheduler serves packets
by its finish time order. In contrast to WFQ, SCFQ has its own
time reference, which measures the service progress through a
virtual time function that depends exclusively on the progress
of served queues [15]. SCFQ allows a fair scheduling,
allocating the bandwidth efficiently between the queues. It is
more easily implementable than WFQ and provides similar
guarantees. However, despite the low complexity, SCFQ has
performances below the WFQ and may be unfair in short term
operation, especially when the number of connections
increases [14]. In [2], it is presented an efficient
implementation of SCFQ, allowing the computation of virtual
time function when packets arrives to the head of the queue.

In the last few years new scheduling disciplines have been
proposed. In 2005, a credit based fair scheduling discipline
called Most Credit First (MCF) was presented in [16]. Its
algorithm minimizes the difference between the service that a
flow should receive in an ideal fairness model and the one that
is actually received by the algorithm. It works by associating a
credit value to each flow. The flows are served in a balanced
mode, according to its credits, and considering their weights.
The flow with most available credit is served iteratively.
Fairness is provided restricting the value of the accumulated
credit. Flows that require bandwidth and have negative
available credits are penalized by not transmitting until their
accumulated credit is recovered.

In [16], it is also presented the algorithm Fast Most Credit
First (FMCF) that reduces the logarithmic time complexity of
MCF to a constant time complexity. It is shown that these
disciplines have better performance than WFQ and DRR.

Other credit-based discipline, presented in [17], is Credit-
Based Fair Queuing (CBFQ). An attractive feature of CBFQ is
the use of different counters to track the amount of
accumulated credits reflecting the bandwidth used for each
flow. CBFQ considers every relevant aspect of a fair adaptive
algorithm, including packet size as well as the actual length
and weight defined for each active queue. Based on these
metrics, CBFQ decides which flow should be served
iteratively, maintaining fairness over time.

The service is balanced so that the expected percentage of
service is maintained over time. Thus, this discipline achieves
the same level of fairness and delay guarantees as virtual time
approaches, avoiding their disadvantages. Compared to
alternative approaches, such as SCFQ, WFQ/PGPS, this
discipline also provides easier implementation [17].

III. PROPOSED ADMISSION CONTROL SOLUTION
In this section, it is presented an adaptive admission control

solution, developed for a real-time service provisioning
platform. The solution was developed in Java EE, and
integrated in an interface of a service provisioning platform.

A. Design Goals
The proposed admission control solution considers the

following design goals:

 4

• limitation of the requests admission rate; when exceeded,
it is possible to temporary store rejected requests,
preventing direct discard;

• fair service differentiation, according to the priority
defined for each service class;

• adaptive treatment, according to the incoming load,
providing flexible bandwidth sharing over time;

• fully configurable, so that the desired rate control
granularity and differentiation behavior can be obtained;

• low time complexity, without compromising efficiency.

B. Relevant Features
The proposed solution is responsible for maintaining the

levels of service quality, supporting differentiated service
request admission. The scheduling discipline is the most
important admission control element that can provide it.
Therefore, some desirable features must be taken into
consideration, yet many of them are sometimes mutually
contradictory [1]. The main characteristics of a scheduling
algorithm to be effective and fair are the following:

1. Low Complexity and Efficiency: scheduling should be
computationally simple, while maintaining efficiency. The
iterative process of decision should have low complexity
instructions, without disregarding the initial objectives for the
scheduling discipline. The complexity should be O(1) [2, 3] so
that the time taken to elect the flow to serve for each iteration
does not depend on the number of flows.

2. Scalability: the algorithm must be scalable, therefore it
must have a good temporal computational complexity so that
the scheduling process can be efficient in small and large
scale. This concern may be less relevant in cases where the
number of queues is limited.

3. Fairness: it is essential to guarantee fairness in the
scheduling process. It should be allocated enough bandwidth
to each queue to ensure that no queue remains indefinitely
without being serviced, occurring starvation. The absence of
starvation implies that a minimum service allocation is
established for each queue. To prevent misuse of bandwidth
and to avoid starvation it is essential to ensure that the
scheduling of a particular class of service does not
substantially degrade the service of the others. This may be
achieved protecting well-behaved flows from badly behaved
flows that may endanger fairness. These disruptive flows
should be ignored or penalized.

4. Adaptation: Sometimes it is impossible to guarantee the
scheduling of all requests within a short period of time.
However scheduling must be optimized in order to minimize
the number of discarded requests. Therefore, the algorithm
must react to the occurrence of situations that may affect the
quality of service. Every time that the queue load or the
historic of the distribution of each queue admission changes
dramatically, the scheduler should adapt his behavior.

5. Differentiation: The scheduling algorithm must have the
capacity of service differentiation according to the distinct
types of service class. The requests related to each service
class should be placed in the same queue so that the expected
behavior can be provided, depending on the settings specified
in service level agreements. The value of each priority must be
considered in order to avoid putting too much latency in the
admission of low priority queues.

6. Quality of Service Guarantees: The performance levels
should be defined in contracts between the customer and the
service supplier. The degradation of quality of service should
be avoided. The control of metrics such as bandwidth, delay,
jitter, loss, etc. can ensure the performance of the admission
mechanism, according to the level of quality of service
required for each class.

In operational service platforms, it is advisable to limit the
time a request waits for admission control so that when a
request times out, it should be removed from the queue. The
configuration of these parameters should be carefully set,
since they affect the performance of admission control.

C. Admission Process

The proposed admission process is applied to every request
arriving to the interface. As illustrated in Figure 1, the
admission of a service request is carried out through several
stages.

 Figure 1. Admission Control Scheme

Policing: it verifies if the request has permission to access the
platform, according to the specified contract. It is confirmed if
the client can invoke the specified service, and if the service
can be executed at the current time, according to the
negotiated time schedule. If the request passes the policing
process (condition C1) it proceeds to classification, otherwise
it is rejected.
Classification: Similar priority services are grouped in the
same service class. Classification is the stage that maps the
service request to an existing service class. This information is
stored in a database table, being kept in memory when needed.
This allows the classification process to be done quickly. After
being classified, the request is inserted into the respective
queue, and waits for the scheduler to serve it. If the request
identifier is successfully placed into the queue (condition C2),
it is automatically submitted to the scheduling process, which
runs in parallel. If the queue is full, the request is rejected. The
use of service classes reduces the number of queues used in
scheduling, by avoiding the use of a queue per service.
Scheduling: The scheduler serves the active queues iteratively,
allowing controlling the order by which requests are served.
An efficient fair scheduler must support the features presented
in Subsection III-B. Thus, the most appropriate scheduling
disciplines are MCF and CBFQ. All the others disciplines are
inadequate, either because they perform the computation of
virtual time functions per request, or because they do not
achieve a suitable level of fairness. Thus, the proposed
solution implements credit-based scheduling algorithms MCF,
to achieve a fair and efficient scheduling, and CBFQ, to
achieve a fair but more adaptive solution, considering load
conditions and the utilization level of each queue over time.

 5

D. System Architecture

The admission process is performed over the system
architecture illustrated in Figure 2.

Figure 2. Architecture Scheme

Service provisioning requests are received into the platform
at a random rate, departing at a normalized rate. This is
performed controlling the service rate of the requests. In more
detail, the architecture of the proposed system consists of four
modules:
1) Request Threads: Each request is associated with a thread.
After policing the request, the request thread classifies and
inserts the request into the corresponding queue. When all the
queues are inactive and the rate is not exceeded, requests are
served directly, avoiding the operation of enqueuing and
scheduling (condition C). This feature increases the flexibility
and efficiency of rate regulation. In these circumstances,
requests are only inserted into the queue when the Bucket has
no more tokens available.
However, if any queue has requests to serve, they have
priority on service, and direct admission is not allowed. Once
the request identifier is inserted into the queue, threads await
for a service admission notification. If this notification does
not arrive within a certain amount of time, a timeout occurs
and the request identifier will be removed from the queue.
2) Data Structures: The data structure necessary to support
admission control consists of a bucket and a queue per service
class. Following Token Bucket terminology, the bucket is a
counter that defines the granularity of requests being schedule.
The number of units increased periodically in the bucket
defines the rate elasticity and accuracy. When the bucket is
empty, it means that the request admission rate has been
reached, so the scheduler will wait for new tokens to be added
to the bucket.

The use of Queues allows storing the identifiers of requests.
All requests in a queue belong to the same service class, have
the same priority, so there is no need to sort them. Each queue
is served by FIFO method. Once inserted in the queue, the
requests thread waits for a notification that reflects its
acceptance or rejection. Methods of early congestion detection
are not used because requests have an online profile, requiring
an urgent and necessary answer. The requests cannot be
considered invalid unless the timeout is exceeded.
3) IncBucket: The IncBucket is a thread responsible for the
periodic increasing of the bucket. The bucket counter is
limited by the maximum burst of requests that can be sent
consecutively. The increasing rate determines the number of
units increased per iteration. It is possible to increase several
units simultaneously, resulting in larger periods of time
between increases. This decision must be taken wisely since it

sacrifices rate control granularity. The IncBucket thread
operates alongside the admission mechanism.
4) Scheduler: Queues are served when there are credit units
to be consumed in the bucket. For each request identifier that
is served, the bucket is decremented by one unit. The
scheduling of queues is carried out according to the
implemented scheduling discipline (MCF or CBFQ). The
service as a whole, considering all the queues has a
normalized departure rate, determined by the configured rate.
5) Coordination: The presented tasks are executed in
parallel, which requires coordination among threads. There are
three coordination cases: (i) when the queues are empty the
scheduler stays idle until a new request arrives, and a
notification is sent from the request thread to the scheduler so
that it can proceed; (ii) when the bucket is empty, the
scheduler is also idle until the counter units is increased, and a
notification is sent from IncBucket to the Scheduler, allowing
the service to proceed; (iii) when the scheduler serves a
request, it sends a notification to the respective thread, which
is idle while waiting for a request acceptance decision.

IV. TEST AND RESULTS

To demonstrate the behavior of the solution several tests
were performed. These tests simulate requests submitted to
admission control. The solution was configured to limit the
rate to 100 requests per second. The timeout was configured in
order to avoid discarding requests. The bucket was initially
limited to a unit to avoid bursts of requests. Consequently, it is
increased each 1/(maximum rate) milliseconds. Thus, the
solution is configured for a rigid rate of transmission. Three
service classes were defined, supported by three queues, with
a bandwidth sharing of 50%, 30% and 20%.

The performed test considers the consecutive submission of
1200 requests for class-1. After four seconds, 1200 requests
are submitted for class-2, and finally, 1200 requests for class-
3. The fact that the throughput cannot overcome 100 requests
per second, determines that in the moment that requests from
class-2 and 3 are submitted, there are still requests from class
1 in the respective queue to be served. This allows verifying if
the bandwidth sharing is performed in a fair mode among all
active queues, in several cases of activity.

To evaluate the behavior of the proposed admission control
scheme, a monitoring thread was created to periodically
measure the performance of the three service classes. This
thread maintains counters that reflect the number of served
requests for each service type, distinguishing: the number of
requests served directly, without being queued; the number of
requests served indirectly, through enqueuing and scheduling;
and the number of requests discarded due to timeout. Thus,
monitoring allows verifying that the scheduling and rate
limitation performs correctly over time.

Figure 3. MCF results

 6

Figure 4. CBFQ results

Figure 5. Service Delays

Figure 3 and Figure 4 present the test monitoring results for
MCF and CBFQ algorithms respectively, regarding the
achieved throughput and bandwidth occupancy. Figure 5
presents the evolution of the metric delay in both cases.

MCF results presented in Figure 3 show that, in the initial
moments, when only class-1 queue is active, the entire amount
of bandwidth is consumed, and a constant throughput of 100
requests per second is achieved. When class-2 requests are
inserted into the respective queue, the scheduler distributes the
bandwidth by both active queues proportionally to its weights.
Similarly, when class-3 requests are submitted, the third queue
becomes active and the bandwidth is distributed among all
active queues, in a proportional mode. When class-1 queue
becomes empty, its bandwidth is distributed between class-2
and class-3 queues that remain active. Finally, when class-2
queue becomes inactive, class-3 consumes the total amount of
bandwidth as no other queue has competing requests. This test
presents the fair behavior of MCF scheduler.

CBFQ results presented in Figure 4 show that, in the initial
moments, class-1 queue also consumes the entire bandwidth,
having a constant throughput of 100 requests per second, as
expected. However, instead of sharing the bandwidth strictly
according to queue priorities, queues lengths are also
considered. The increasing curve that characterizes class-3
service comes from the fact that, despite the lower priority
associated with service class-3, the size of class-3 queue is
considerable superior to class-2 queue. Thus, to balance queue
lengths, class-3 queue is served with priority. This fact makes
CBFQ appropriated to deal with congestion scenarios, in
which lower priority queues have high traffic affluence.

MCF service delays presented in Figure 5 illustrate three
variations, related to class-1, 2 and 3 requests. The delay
increases because the last served packet has the higher delay.
Requests from class-1 suffer lower delay because class-1 has
the highest priority. Although class-3 requests hold lower
priority, they suffer less delay then class-2 requests. However,
class-3 had the chance of using the total available bandwidth,
while class-2 service was exposed to higher contention, having
to share the bandwidth with the concurrent queues.

In contrast, CBFQ service delay times demonstrate that the
last served request from class-3 reach the lowest values,
compared to the last served requests from other classes. This is
because class-3 requests were served with higher priority due

to the existence of higher load in class-3 queue. Class-1 delay
is the highest because while balancing the load between all
service classes, the service of class-1 requests was delayed.
Thus, CBFQ sacrificed worst-case delay in order to balance
the load of each queue.

V. CONCLUSIONS
This paper has presented an admission control solution that

implements the recently proposed scheduling disciplines Most
Credit First (MCF) and Credit Based Fair Queuing (CBFQ).

The deployment of this solution in a service provisioning
platform has allowed to regulate the throughput of distinct
service classes, according to each class priority, and to support
the differentiation of promptness level provided among the
services requests. This solution is a step towards quality of
service provisioning through differentiated admission control,
which is essential to enhance the performance and reliability
of the platform. The preliminary results have shown that the
behavior of CBFQ is based on performing a fair scheduling
while maintaining queues lengths balanced. MCF performs a
fair scheduling exclusively based on queues priorities, without
considering the level of congestion present in the queues.

Future work intents to further explore the behavior of both
algorithms under distinct test scenarios and enhance the
proposed admission control solution.

REFERENCES
[1] Briscoe, B., "Flow rate fairness: dismantling a religion.", SIGCOMM

Comput. Commun. Rev., 2007. 37(2): p. 63-74.
[2] Rexford, J.L., A.G. Greenberg, and F.G. Bonomi, "Hardware-Efficient Fair

Queueing Architectures for High-Speed Networks", in In Proceedings of
INFOCOM. 1996. p. 638-646.

[3] Wong, W.K., H.Y. Tang, and V.C.M. Leung, "Token bank fair queuing: a new
scheduling algorithm for wireless multimedia services: Research Articles". Int.
J. Commun. Syst., 2004. 17(6): p. 591-614.

[4] Pedro Sousa, Paulo Carvalho, and V. Freitas, "A multi-constrained QoS aware
scheduler for class-based IP networks". 4TH Symposium on communications
Systems, Networks and Digital Signal Processing, 2004.

[5] Boudec, J.-Y., "Rate adaptation, Congestion Control and Fairness: A
Tutorial". 2000.

[6] Eryilmaz, A. and R. Srikant, "Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control". IEEE/ACM
Trans. Netw., 2007. 15(6): p. 1333-1344.

[7] Jalali, A., R. Padovani, and R. Pankaj, "Data throughput of CDMA-HDR a
high efficiency-high data rate personal communication wireless system".
Vehicular Technology Conference Proceedings, 2000. 3: p. 1854--1858.

[8] Hahne, E.L., "Round-Robin Scheduling for Max-Min Fairness in Data
Networks". IEEE Journal, 1991. 9: p. 1024--1039.

[9] Trajkovic, N.A.a.B.C.a.L., "Modeling Packet Scheduling Algorithms in IP
Routers". 2001: School of Engineering Science, Simon Fraser University.

[10] Parekh, A.K. and R.G. Gallager, "A generalized processor sharing approach
to flow control in integrated services network: the single node case", in
IEEE/ACM Trans. Netw. (Vol. 1). 1993, IEEE Press

[11] Shreedhar, M. and G. Varghese, "Efficient fair queueing using deficit round
robin", in SIGCOMM'95. 1995, ACM: Cambridge, Massachusetts, U.S.

[12] Nagle, J.B., "On packet switches with infinite storage, in Innovations in
Internetworking". 1988, Artech House, Inc. p. 136-139.

[13] Demers, A., S. Keshav, and S. Shenker, "Analysis and simulation of a fair
queueing algorithm". SIGCOMM Comput. Commun. Rev., 1989.

[14] Bennett, J.C.R., "Wf2q : Worst-case Fair Weighted Fair Queueing". 1996.
[15] Golestani, S.J., "A self-clocked fair queueing scheme for broadband

applications". NFOCOM apos;94. , 1994. 2.
[16] Pan D., Y.Y., "Credit based fair scheduling for packet switched networks".

INFOCOM 2005, 2005. 2.
[17] Bensaou, B., D.H.K. Tsang, and K.T. Chan, "Credit-based fair queueing

(CBFQ): a simple service-scheduling algorithm for packet-switched
networks". IEEE/ACM Trans. Netw., 2001. 9(5): p. 591-604.

