
A Logic-based Approach for IP Network Services
Management and Configuration

Pedro Alı́pio, José Neves and Paulo Carvalho
Department of Informatics, University of Minho, Campus Gualtar

4710-057 Braga, Portugal
Email: {pma,jneves,pmc}@di.uminho.pt

Abstract— Most of the network service management systems
rely on informal specifications, hard-coded programming and
relational databases to store and manage network services. As
a result, such systems may not be correct facing their require-
ments and they may not be flexible enough to perform network
service management efficiently. This paper presents ongoing
work toward an innovative approach, based on knowledge rep-
resentation, to formally specify the contractual, administrative
and technical contents of Service Level Agreements, and the
network service management processes and their orchestration
promoting network service autonomic management and config-
uration. By using a knowledge based formal framework and an
inference engine capable of reasoning over concepts, relations
and changes of state, it is possible to create a more flexible and
robust ground for specifying and implementing autonomic and
adaptive management tasks.

I. INTRODUCTION

Frequently, customer network services are expressed
through Service Level Agreements (SLAs), where a techni-
cal part, called Service Level Specification (SLS) is defined.
While the SLA includes legal, administrative, and economic
information, the SLS includes edge-to-edge IP level informa-
tion about the offered services’ quality. SLA and SLS con-
tents are often specified through XML or Database Schemas.
Service Management Systems are usually applications which
rely on human operators to add, modify or delete information
about services and customers, and to verify if the service
requirements are being assured. In case of performance
degradation, caused by a link failure, or by any abnormal
situation in the network operation, it is up to the operator to
decide which actions should be taken.

Consider a huge ISP running a multiservice network
with thousands of SLAs with different Quality of Service
(QoS) demands. Upon the occurrence of a link failure, it is
impossible for a human operator to handle, in a proper way,
tens or maybe hundreds of alarms alerting for SLA QoS
violation. A human operator will probably take a long time
to reconfigure the network in order to reallocate resources
to those services. Additionally, the time spent on trying
to solve the problem may itself violate the agreed service
availability levels. A convenient solution would require a
system which automatically performs an action, according
to the ISP policies in place, whenever an SLA QoS is
violated. In fact, unless the action requires operations such
as a node or a link replacement, management actions may

be triggered and performed automatically without human
intervention. Those actions may be classified as Automated
and Interactive actions. Actions which take short time peri-
ods to execute, i.e., seconds or a few minutes, and may be
performed without any user intervention, i.e., do not require
interactivity, are considered Automated Actions. Actions
which require interactivity, e.g., filling out fields in web
forms, changing the service QoS requirements or price,
consequently taking time to be carried out, maybe hours or
days, are considered Interactive Actions. Operations carried
out not frequently, which may affect a wide region of the
network domain, e.g., changing the routing policies of the
network domain, are also considered Interactive Actions.

A formal specification of network services management
semantics is required as the building blocks to create the
reasoning mechanisms to allow the development of Self-
managed ISPs. The explicit or formal characterization of
atomic entities (concepts) in a domain and relations that may
be established among them is called an ontology [1], i.e.,
an ontology defines a common vocabulary for information
interchange in a knowledge domain. It includes machine-
interpretable definitions of basic concepts in the domain and
relations among them.

This paper reports ongoing work toward a new approach
to SLAs specification and management based on a high-
level ontology. The present proposal was formally specified
using the Flora-2 system [2] which includes, among other
first-order logics extensions, the F-logic (FL) [3], higher-
order and meta-programming (HiLog) [4] and Transaction
Logic (TR) [5]. These frameworks include several valuable
features for both specification and implementation of a
network service management engine. On the one hand, TR
allows the separation of the service management processes
flow logics from their implementation. On the other hand,
FL allows the development of frame based knowledge
specifications including the concepts and relations necessary
to reason about network services instances. Furthermore,
through meta-programming is possible to include meta-
predicates to check the consistency of service specifications
and the system’s correctness.

This paper is structured as follows: Section II debates
related work and state-of-the art in network services speci-
fication and management, and in knowledge representation;
Section III points out the requirements for SLC/SLA speci-

2
fication; Section IV explains the SLA management process
and Section V presents the conclusions and future work.

II. RELATED WORK

Many of the network services management research
groups have been more committed to SLS definition and
management [6], [7], [8], [9] rather than obtaining more ex-
tensive approaches as toward SLS, SLA and SLC autonomic
management.

Usually, pure XML is the preferred network services spec-
ification language. However, XML has well known limita-
tions, namely in creating non-hierarquical relations between
elements. Lately, ontologies are being mostly used to bring
semantics to the World-Wide Web (WWW). The WWW
Consortium (W3C) is developing the Resource Description
Framework (RDF) [10], a language for encoding knowledge
on Web pages to make it understandable to electronic agents
searching for information. The Defense Advanced Research
Projects Agency (DARPA), in conjunction with the W3C,
is developing DARPA Agent Markup Language (DAML)
by extending RDF with more expressive constructs aimed at
facilitating agent interaction on the Web [11]. More recently,
the W3C Web Ontology Working Group is developing OWL
(Web Ontology Language) [12] based on description logic,
maintaining as much compatibility as possible with the
existing languages, including RDF and DAML.

The Service Oriented Architecture (SOA) community is
also using ontology based languages to specify semantic web
services, such as DAML-S [13], OWL-S [14], Semantic Web
Services Language (SWSL) [15], Web Service Modeling
Language (WSML) [16], focusing on web services discov-
ery, composition, choreography and orchestration. Relevant
work regarding Web SLA specification and management has
also been developed [17], [18], [19].

Most of the ontology specification languages rely on
XML and RDF only as underneath platform [11], [20],
[12]. As a result, these ontologies may be validated, parsed
or transformed with regular XML tools. Nevertheless, rea-
soning (queries, verification and taxonomical inference) is
often performed by knowledge based systems using other
formalisms. Several of these tools and formalisms, such as
Flora-2 based on the FL and TR frameworks, integrates
frames, rules, inheritance, and transactions, consisting of far
more powerful languages than those exclusively designed
for the Semantic Web or for the Semantic Web Services.
The main drawback of these languages is interoperability,
i.e, exchanging information with other systems or software
components. Nevertheless, efforts are being made to develop
a FL XML Schema and tools to transform XML documents
into FL [21] which may be used to overcome this problem.
A Java package is also being developed for Flora-2 to
allow using it as a reason engine for knowledge based
desktop or web applications. Furthermore, the Web Service
Modeling Language (WSML), which is based on the FL and
TR, and the Web Service Modelling eXecution environment
(WSMX) [22] are also in progress.

!"# !"$

!"!

!"
#$%

#$#

!

"

!"#%&'()*+

!"#,-'&()./

!"$%')0)/1

&'(%)*+,

-'#)+./(0

1(+2*&/(

1(*-/

%*'+./

!"$!(&(*+

#)%)'#

$23)/%*'+./ 4*05/)0&6%*'+./

1(*.%(34#)%5/6+$&/(

!

"

%&.*,4-+,)%-)#

!

"

!

"

)/-64-+,)%-)

*#7% *#7%

!"$7./)(.')/1
!*(()/1+

.+,*)+(*,8

#/))*,8#

!"$8*+9./+*
4)3*+

!"$
$:&)6&;)6)(<

%2%*$%9*$*)3

=>9*0(*2
?*(@.'ABC.!

!05*2-6)/1

7&/&1*3*/(
$0()./+

#6+()4)/(.4%-)*+,#0

$+,84)/(.4%-)*+,#

!

"

(/#1+,#/4)*./#

,/):+(54;+<

7*&+-'*2BC.!

$%#)4./%#'(/./,)

#-6/&'$*,8

Fig. 1. SLC/SLA Ontology.

As WSML and WSMX still in progress, the present pro-
posal follows a logic based approach, including the FL and
TR formalisms to specify SLCs, SLAs and SLS, which may
be implemented in the Flora-2 system, including features
that allow reasoning over concepts, relations and changes
of state. This will provide a flexible and robust ground
for specifying and implementing autonomic and adaptive
management tasks in multiservice environments.

III. NETWORK SERVICES SPECIFICATIONS

In the present proposal, network service specifications
include three different abstraction layers: (i) the contract
information layer; (ii) service agreement layer; and (iii)
technical specification layer. Each of these sub-specifications
has its own context and requirements, i.e, each layer includes
a different perspective over network services including a
different knowledge base and operations. For example, a
Service Level Contract (SLC) includes information about
the parties involved and the contract duration, a Service
Level Agreement (SLA) includes which type of service the
customer requires and what are his expectation concerning
matters such as the availability or pricing, finally, the Ser-
vice Level Specification (SLS), includes technical service
requirements. SLCs, SLAs and SLSs are interrelated as Fig.
1 illustrates.

A. Service Level Contracts

An SLC includes information about the parties involved in
the service negotiation, the contract validity period and the
services enclosed in the contract by including one or several

3
SLAs. The parties involved are a service provider, usually an
ISP, and a customer, which eventually may be another ISP. In
Fig. 1, both entities, provider and customer, are represented
by one or more persons given in the specification by the
relation primary stakeholder. Administrative and technical
personnel are also referred to be responsible for further
negotiations or technical problems during the validity of
the contract, respectively. The contract validity period is
given by the relation duration including the start date and
the end date for the contract. In addition, a contract may
include several SLAs, as a customer may want, for example,
a telephony service, e.g., VoIP, and high throughput data
service, e.g, for database related traffic. By following this
approach, it is not necessary to create two contracts, one for
each service, for the same customer and validity period.

B. Service Level Agreements

SLAs include information about which network service(s)
are subscribed by the customer and which are his expecta-
tions including service availability, network QoS, response
times and pricing. In Figure 1, the relation response times
includes information about the Maximum Setup Time, i.e,
the maximum time spent in network configurations to start
offering the service with the agreed QoS and the Mean and
Maximum Time to Repair, i.e., the mean and maximum
time to repair the service in case of any SLA violation.
The relation availability includes information about the
Unavailable Time Limit and the Mean Down Time, i.e, the
maximum and mean time, within the service scheduling, in
which, the service is not available. The relation Network QoS
expresses the level of network QoS agreed with the customer.
The relation last measurement is used to obtain the network
performance metric values, in order to verify if the expected
QoS is being somehow violated. In case of violation of
any of the agreed parameters, two types of actions may
be performed, Automated Actions or Interactive Actions.
As explained in Section I, Automated Actions are actions
which do not require user interactivity, therefore they may
be executed automatically. On the other hand, Interactive
Actions, require user intervention, usually consisting of
changing a set of parameters which require the customer
or the ISP approval. The relation price expresses the service
price which depends on the agreed QoS, service scheduling,
and other SLA parameters negotiated with the customer.
Finally, SLAs may contain one or several SLSs, as some
services may be divided, in technical terms, into more than
one different service types. For example, a VoIP service may
be divided into a telephony service and a signaling service.

C. Service Level Specifications

SLSs include technical information regarding the service
scope, the QoS requirements, and the implementation of the
services, i.e, the required configurations for the components
of a network with QoS support such as classifiers, traffic
conditioners, traffic shapers and active queue managers. SLS
is not the main focus of this paper as it is more concerned

!"#$%&&'()*+

,*-(.'/*-

'*0*%-*+

#.1(2%1*+

%/13(4-

$-.//*--5.0

,*-(.'/*-

%00(/%1*+

!"6$

7&3'+

!1%1.-$

.4/8%49*+

4(1$34$-/8*+.0*
:(1$*4(.98

'*-(.'/*-

!"#$;3(0%13(4

<41*'%/13)*

%/13(4-

$-.//*--5.0

!"#$%&#'(

!)#*$+,

-+#'.&)#*/'

!)#*$+,

,#&.#

'+(

#.1(2%1*+

%/13(4-$5%30*+

#00$%/13(4-

5%30*+

0$1
2$+*#$.*+3

145614!7
!88.$/&9

!99$)&#'
:',$".)',

:'9'&,'
:',$".)',

!"#

4(1$

%&&'()*+

5;')<714!7
1);'("9*+3

=&*#7>$.
1);'("9'(
?'.*$(

=%/>34-/8*+.0*

!1%1.-$

.4/8%49*+

5;')<
:',$".)',

Fig. 2. SLA Management Process.

in debating a high-level specification for automated service
level management of network services considering the high-
est abstraction layers of those services (SLCs and SLAs).
For information about a similar approach focused on SLSs
we recommend further reading [23].

IV. SLA MANAGEMENT

The SLA goes through several operations and changes
of state during its lifetime, therefore it is specified as a
workflow. Figure 2 illustrates the SLA processing phase
through a graph, where the arrows stand for conditions
and the nodes stand for processes. The SLA management
includes the following steps:

• initially, the SLA is validated and required for both
ISP and customer approval. This operation consists
of validation, i.e, type and cardinality checking, and
consistency checking verifying if the new SLA instance
meets the specification requirements, e.g., verifying if
the SLA scheduling matches the SLC duration. If the
SLA is valid and consistent, the system proceeds by
checking if there are enough network resources for the
services included in the SLA, otherwise the SLA cannot
be approved;

• the SLA processing proceeds by checking if the current
time is included in the SLA scheduling, then all the

4
network services included in the SLA, given by the set
of SLSs, get network resources. In an implementation
scenario this is achieved by mapping SLSs into network
configurations, e.g., using a network management solu-
tion based on COPS or SNMP.

• after this stage is completed, the SLA is monitored in
order to check if the network services included in the
SLA are being offered with the agreed QoS. If an SLA
violation occurs, two kinds of defined actions may be
applied to recover from such a state: Automated and
Interactive Actions. Automated Actions are attempted
in the first place as they may solve the problem much
faster. If these actions fail to recover from the viola-
tion state, Interactive Actions are then executed. For
example, a router queue reconfiguration is considered
to be an Automated Action as it does not need customer
approval. On the other side, a QoS downgrade or a
price adjustment is considered a Interactive Action as
it requires the service subscriber approval. This actions
are crucial to keep providing the network services,
maximizing the network usage and ISP profit;

• if any of these actions are able to solve the problem,
then the SLA management engine loops back to the
scheduling checking step. If the SLA is out of the
scheduling period, then the allocated network resources
are released and the SLA processing is suspended. As
soon as it is checked to be back in schedule the network
resources are reallocated and the SLA processing is
resumed. When none of the SLA violation recovery
operations is successful the SLC is rescinded. It is also
rescinded when the contract expires.

V. CONCLUSION

FL and TR include the necessary syntax and semantics
to be used as a formal ground to specify SLCs, SLAs,
and SLSs. Moreover, it allows to specify processes as flows
of operations which may include non-determinist execution
and backtrackable updates. Thus, this ongoing work, besides
proposing a new approach in SLA management and a
formal specification for a network service ontology, it also
includes the necessary reasoning processes to implement
an autonomous decision mechanism, capable of recovering
from SLA violations. Work is in progress to create interfaces
for managing the SLC, SLA and SLS instances and external
process connections, namely, for network QoS configuration
and monitoring. Specification and implementation details
can be obtained directly from the authors.

ACKNOWLEDGMENTS

A PhD grant provided by Fundação para a Ciência e Tec-
nologia (SFRH/BD/17579/2004) is gratefully acknowledged.

REFERENCES

[1] T. R. Gruber. Towards Principles for the Design of Ontologies Used
for Knowledge Sharing. In N. Guarino and R. Poli, editors, Formal
Ontology in Conceptual Analysis and Knowledge Representation,
Deventer, The Netherlands, 1993. Kluwer Academic Publishers.

[2] Guizhen Yang and Michael Kifer. FLORA: Implementing an Efficient
DOOD System Using a Tabling Logic Engine. In CL ’00: Proceedings
of the First International Conference on Computational Logic, pages
1078–1093, London, UK, 2000. Springer-Verlag.

[3] Michael Kifer, Georg Lausen, and James Wu. Logical Foundations
of Object-Oriented and Frame-Based Languages. J. ACM, 42(4):741–
843, 1995.

[4] Weidong Chen, Michael Kifer, and David Scott Warren. Hilog: A
foundation for higher-order logic programming. J. Log. Program.,
15(3):187–230, 1993.

[5] Anthony J. Bonner and Michael Kifer. Transaction Logic Program-
ming. In ICLP, pages 257–279, 1993.

[6] P. Morand, M. Boucadair, R. Egan P. Levis, H. Asgari, D. Griffin,
J. Griem, J. Spencer, P. Trimintzios, M. Howarth, N. Wang, P. Flegkas,
K. Ho, S. Georgoulas, G. Pavlou, P. Georgatsos, and T. Damilatis.
Mescal D1.3 - Final Specification of Protocols and Algorithms for
Inter-domain SLS Management and Traffic Engineering for QoS-
based IP Service Delivery and their Test Requirements . Mescal
Project IST-2001-37961, Jan 2005.

[7] A. Diaconescu, S. Antonio, M. Esposito, S. Romano, and M. Potts.
Cadenus D2.3 - Resource Management in SLA Networks. Cadenus
Project IST-1999-11017, May 2003.

[8] Danny Goderis, Yves T’joens, Chistian Jacquenet, George Meme-
nious, George Pavlou, Richard Egan, David Griffin, Panos Georgatsos,
Leonidas Georgiadis, and Pim Van Heuven. Service Level Specifica-
tion Semantics, Parameters, and Negotiation Requirements. Internet-
Draft, drafttequila-sls-03.txt (work in progress), Oct 2003.

[9] Pedro Alipio, Solange Lima, and Paulo Carvalho. XML Service Level
Specification and Validation. In 10th IEEE Symposium on Computers
and Communications (ISCC’05), pages 975–980, 2005.

[10] Dan Brickley and R.V. Guha. Resource Description Framework
(RDF) Schema Specification. http://www.w3.org/TR/rdf-schema,
W3C, 1999.

[11] J. Hendler and D. McGuinness. DARPA Agent Markup Language.
IEEE Intelligent Systems, 15(6), 2000.

[12] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, , and Lynn Andrea
Stein. OWL Web Ontology Language Reference. W3C, 2004.

[13] Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila,
David L. Martin, Sheila A. McIlraith, Srini Narayanan, Massimo
Paolucci, Terence Payne, Katia Sycara, and Honglei Zeng. Daml-s:
Semantic markup for web services. In Proceedings of the Interna-
tional Semantic Web Workshop, 2001.

[14] D. Martin, M. Burstein, G. Denker, J. Hobbs, L. Kagal, O. Lassila,
D. McDermott, S. McIlraith, M. Paolucci, B. Parsia, T. Payne,
M. Sabou, E. Sirin, M. Solanki, N. Srinivasan, and K. Sycaran. OWL-
S 1.1 Release. http://www.daml.org/services/owl-s/1.1/, 2004.

[15] Benjamin N. Grosof, Michael Kifer, and David L. Martin. Rules
in the Semantic Web Services Language (SWSL): An Overview for
Standardization Directions. In Rule Languages for Interoperability,
2005.

[16] Holger Lausen, Jos de Bruijn, Axel Polleres, and Dieter Fensel. Wsml
- a language framework for semantic web services. In Rule Languages
for Interoperability, 2005.

[17] IBM Research. WSLA - Web Services Level Agreement Project.
http://www.research.ibm.com/wsla, April 2003.

[18] Vijay Machiraju Akhil Sahai, Anna Durante. Towards Automated
SLA Management for Web Services. HP Tech.Report, July 2002.

[19] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler,
H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef. Web services
on demand: WSLA-driven automated management. IBM Syst. J.,
43(1):136–158, 2004.

[20] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
DAML+OIL Reference Description. W3C, 2001.

[21] Jos de Bruijn and Michael Kifer. F-logic/XML -
An XML Syntax for F-logic. WSMO Working Draft.
http://www.wsmo.org/2004/d16/d16.2/v0.1/20040324, March 2004.

[22] Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and
Christoph Bussler. Wsmx - a semantic service-oriented architecture.
In ICWS, pages 321–328, 2005.

[23] Pedro Alı́pio, José Neves, and Paulo Carvalho. An Ontology for
Network Services. In International Conference on Computational
Science (3), Lecture Notes in Computer Science, pages 240–243.
Springer, 2006.

