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Abstract

We describe how to build a network intrusion de-
tection sensor by slightly modifying NASA’s CLIPS
source code introducing some new features. An
overview of the system is presented emphasizing the
strategies used to inter-operate between the packet
capture engine written in C and CLIPS. Some exten-
sions were developed in order to manipulate time-
stamps, multiple string pattern matching and cer-
tainty factors. Several Snort functions and plugins
were adapted and used for packet decoding and pre-
processing. A rule translator was also built to reuse
most of the Snort’s attack signatures. Despite some
performance drawbacks, results prove that CLIPS
can be used for real-time network intrusion detec-
tion under certain conditions. Several attack signa-
tures using CLIPS rules are showed in the appendix.
By mixing CLIPS with Snort features, it was pos-
sible to introduce flexibility and expressiveness to
network intrusion detection.

1 Introduction

Network intrusion detection sensors analyze net-
work traffic in real-time in search of malicious ac-
tivities. As a malicious event is detected, adequate
responses are issued in order to stop the intruder’s
activity or to alert the system’s administrator. Sev-
eral strategies have been used to build such a sensor,
although the most usual strategy follows a signature-
based approach [16]. A signature-based sensor uses
an algorithm that compares captured packets to sig-
natures of known malicious events. These type of
algorithms have been evolving very quickly over
the recent years. On the one hand, systems such
as Snort [20], use efficient pattern-matching to de-
tect events, and support more than a thousand rules
without significant performance degradation. On the
other hand, simple pattern-matching techniques do
not provide the required logics to describe the com-

plete attack scenario in an expressive and flexible
manner.

Most of the signature-based network intrusion
detection systems are packet oriented [1], which
means they do not relate events in time nor main-
tain information about the network state. In such
systems, it is impossible to create signatures for net-
work events that require these features. The com-
mon solution has been the use of hard-coded plu-
gins resorting to C language programming skills
and knowledge about the network intrusion detec-
tion system architecture and data structures. Using
plugins leads to a performance increase in the detec-
tion process, though when compared to knowledge
based systems, there is a clear loss in flexibility. To
overcome this limitation, knowledge based systems
such as production systems can be used as a detec-
tion engine. In this paper, we describe how the gen-
eral production system tool CLIPS [19], can be used
for detecting network intrusions.

The packet capture engine was written in C based
on the Snort packet decoder. This choice is con-
venient, as rules and plugins are continually be-
ing developed for Snort lightweight network intru-
sion detection system [20]. Furthermore, using the
same packet data structure as Snort allows to adapt
any of its preprocessor plugins easily. This is par-
ticularly useful for implementing features such as
IP defragmentation, TCP stream reassembly, HTTP
URI decode, and several attack responses, among
other. The CLIPS language was extended with sev-
eral functions to perform time-stamp manipulation,
Snort like string pattern-matching, and other. By
controlling CLIPS agenda, it is possible to intro-
duce multiple string pattern-matching and certainty
factors. Multiple string pattern-matching increases
the system performance significantly when there are
several rules testing the packet payload simultane-
ously [? ]. Certainty factors may be very useful to
identify false positive alarms. When the certainty
factor of an issued alarm is too low, it is considered
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not reliable. In order to increase performace, tips to
create efficient rulesets are also presented. By con-
trolling system’s inference using CLIPS modules,
ruleset size can be reduced, further improving the
overall performance of the real-time intrusion detec-
tion process. Finally, in the appendix, examples of
attack signatures are also showed and explained.

2 Related Work

There are several contibutions focusing on the use
of expert systems or knowledge based systems in
computer systems intrusion detection (none of those
used public domain expert system shells...).

P-BEST (Production-Based Expert System
Toolset) has evolved from a lineage of intrusion
detection projects, which include MIDAS [22],
IDES [15], NIDES [3], and more recently the
EMERALD eXpert [17]. P-BEST is a forward
chaining expert system shell, which was applied for
both network and host based intrusion detection.

The ASAX (Advanced Security and Audit Trail
Analysis on UniX) project [11] uses a rule-based
language called RUSSEL (Rule Based Sequence
Evaluation Language), which provides a combina-
tion of procedural and rule-based programming to
reason about activity on Unix systems by analyzing
audit trails.

The University of California at Santa Barbara
used a slightly different approach in USTAT (Unix
State Transition Analysis Tool) [12]. Intrusions
were detected using state transition diagrams mod-
eling the sequence of operations and state changes
that occur during the attack instead of production
rules. A similar approach was used in the IDIOT
(Intrusion Detection in Our Time) system. IDIOT’s
detection engine was also based on a graphical view
of the malicious behavior, but it used colored petri-
nets to model an intrusion signature [5].

Wisdom and Sense [23] and NADIR [13], both
from Los Alamos National Laboratory, are further
examples of knowledge based systems oriented to
malicious activity detection. In the case of Wis-
dom and Sense, the anomaly detection component
is also implemented as a rule-base. The signature
analysis component is a combination of site-specific
policies, expert penetration rules and other admin-
istrative data in the same rule-base. NADIR intru-
sion signature rule-base uses empirical data result-
ing from interviews with several security experts.

3 An overview of CLIPS

CLIPS (C Language Integrated Production System)
was developed using C programming language at
NASA/Johnson Space Center aiming at high porta-
bility, low cost, and easy integration with external
systems.

CLIPS is a multiparadigm programming language
providing support for rule-based, object-oriented,
and procedural programming [10]. The inference
engine algorithms and the knowledge representa-
tion provided by the rule-based programming lan-
guage are similar, but more powerful than those used
in OPS5 production system [8]. CLIPS rules syn-
tax is similar to rule languages such as ART, ART-
IM, Eclipse, and Cognate. Only forward chain-
ing is supported. The object-oriented programming
in CLIPS is called COOL (CLIPS Object Oriented
Language), which combines features of common
object-oriented languages, such as Smalltalk and
Common Lisp Object System (CLOS), with some
new ideas. The procedural programming language
has features similar to C, PASCAL, ADA and oth-
ers, but it is syntactically similar to LISP. CLIPS
source code is publicly available for multiple plat-
forms.

3.1 CLIPS basic components

Like any other expert system shell, CLIPS has tree
basic components: a fact list containing data on
which inferences are derived; a knowledge base
which contains all the rules and an inference engine
that controls the overall execution.

3.1.1 Facts

In order to resolve a problem, a CLIPS program
must have data or information to reason about. A
“chunk” of data is called afact. Facts consists of
a relation name(a symbolic field) followed by zero
or moreslots(also symbolic fields) and their associ-
ated values, as the following example illustrates:

(person (name “Pedro Alípio”)
(age 29)
(eye-color brown)
(hair-color dark-brown))

Before facts can be created, CLIPS must be in-
formed about which slots are valid for a given rela-
tion name. Templates are specifications of facts that
share the same relation name and the same structure.
A template for factpersoncould be defined as:
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(deftemplate person “A person tem-
plate”

(slot name)
(slot age)
(slot eye-color)
(slot hair-color))

Slots can be specified as single values or multi-
values by placing the keyworkmultislot instead of
slot. Facts can be added, removed and modified with
CLIPS commandsassert, retractandmodify.

3.1.2 Rules

An expert system needs rules to perform reasoning
over facts. In production systems, a rule is defined as
a set of conditional elements and a set of actions. If
there is a matching in all the conditional elements of
the left-hand side, the rule is placed in the agenda.
When the inference engine selects a rule for firing
from the agenda, the right-hand side is executed. A
rule in CLIPS has the following syntax:

(defrule <rule name> [<comment>]
<patterns>* ; Left-

Hand Side (LHS) of the rule
=>
<actions>*) ; Right-

Hand Side (RHS) of the rule

Patterns consist of constraints applied to the fact
list. Those constraints can be specified on the fact’s
slots. When a full LHS matching occurs, by using
?var_namein the pattern slot value or $?var_name
for multifield values, variables can be bound to fact’s
slots values. In the pattern:

(data (x ?x&:(> ?x 4)))

CLIPS binds variablex to slot x on every instance
of datauntil it finds an instance where the value of
variablex is greater than 4. These patterns are very
useful since they are simultaneously a constraint and
a variable binding. All the variables that have been
bound on the LHS can be used in the rule’s RHS.

3.1.3 Inference engine

CLIPS inference engine uses the forward chaining
approach, which means that it reasons from facts to
the conclusions resulting from those facts.

Fact List Knowledge
Base

MATCH

Conflict Set
(Agenda)

SELECT

EXECUTE

Changes(assert/retract/modify)

Figure 1: The inference process.

Figure 1 represents the inference process of pro-
duction systems in general:

• The first step (MATCH) consists of updating
the agenda by checking whether the LHSs of
any rules are satisfied. If so, they are acti-
vated. Activations (or instantiations) are re-
moved from the agenda if their LHSs are no
longer satisfied.

• The second step (SELECT) consists of se-
lecting a rule instantiation from those in the
agenda, in order to execute the corresponding
RHS. To perform this operation a conflict res-
olution criteria is needed. There are several
strategies to resolve conflicts in the rule selec-
tion, either based in rule priorities (saliencein
CLIPS) or time-stamps (e.g. LEX and MEA).

• The third step (EXECUTE) consists on execut-
ing the RHS of the selected rule. The action na-
ture can vary from fact list changes to regular
functions or statements, such as input-output
or even user-defined. If the fact list is altered,
MATCH step is once again performed in order
to determine if new activations are due.

• Finally, SELECTandEXECUTEsteps are car-
ried out until the agenda is empty.
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To avoid the possibility of infinite loops, CLIPS ex-
hibits a property calledrefraction, so that rules will
not fire more than once for a specified set of facts.

To improve performance in the MATCH step the
Retealgorithm is used [9]. TheRetealgorithm is
a fast pattern matcher which compiles information
about rules in a network to obtain its speed. Instead
of testing all rule’s LHSs, it only looks for changes
in matches on every cycle. This greatly speeds up
the matching process since rules matching unaltered
facts will not be tested.

4 Changing CLIPS to support
network intrusion detection

CLIPS was designed to be embedded in other appli-
cations. When CLIPS is used as an embedded ap-
plication themain.cfile1 must be changed to meet
specific application requirements. This may include
calling specific CLIPS statements without any user
interaction, such as adding facts, reseting CLIPS,
loading rules or running the system.

4.1 Structure of the sensor

The network intrusion detection sensor is conceptu-
ally divided in two major components: the packet
capture engine and the CLIPS embedded expert
system shell. Integration is carried out by decod-
ing captured data into higher abstraction layers and
passing it to CLIPS as facts. Figure 2 shows a more
detailed view of the sensor’s architecture.

1CLIPS’s main file starts the environment, initializes user
functions and calls the command line interpreter.

Initialize
CLIPS

pcap
loop

Packet Decode

Preprocessors

Assert Packet

Run Expert System

Retract Packet

Initialize
pcap

Time-stamp functions
Response functions

String functions
Pattern matching functions

Figure 2: Sensor’s structure.

The sensor is able to operate over two distinct data
sources: real-time network traffic or raw packet files
previously captured. If real-time network traffic data
source is chosen, the packet capture engine needs to
know on which network interface it will be active.
BPF filters (Berckley Packet Filters) can also be ap-
plied to packets captured from both data sources.

CLIPS is then initialized. The initialization pro-
cess consists of creating the CLIPS environment,
initializing user functions, loading a configuration
file and reseting the system. CLIPS environment are
several data structures which require memory allo-
cation and are used to maintain the system’s current
state. User functions (written in C) are mapped into
CLIPS functions for several purposes such as packet
time-stamp manipulation or pattern matching. The
configuration file is used to configure the sensor, in-
dicating which rule files and preprocessing plugins
will be applied to captured packets.

Each time a packet is captured a packet handler
is invoked. The packet handler decodes raw packets
into higher level data structures. Preprocessor plu-
gins are then applied to network traffic, modifying
the contents of those data structures. Packet data is
converted into a CLIPS’s fact and asserted into the
fact list. The ruleset is then invoked to perform the
detection process. When CLIPS inference engine
stops, the current packet is removed from the fact’s
list.
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4.2 Packet Capture Engine

Network traffic is captured usinglibpcap, which is
the packet capture library used intcpdump[14]. This
allows portability2; isolates the application from
link technology; and allows the sensor to read raw
packet data files captured bytcpdump. Other im-
portant advantage of using libpcap is that it provides
an easy way of applying kernel packet filters (such
as BPF) reducing the network traffic, increasing the
sensor real-time performance [18].

Each time a traffic unit is captured a packet han-
dler is called bylibpcap. The packet handler func-
tion, among other operations, has to decode the raw
packet into data structures representing the TCP/IP
stack. To provide easy integration with Snort’s pre-
processor plugins and rules, its packet decode func-
tions were adapted. A large data structure called
packetis then used to integrate simultaneously each
packet layer header and data in a higher level format
for URIs, TCP options, payload and others.

4.3 Adding packet data to CLIPS

Packet data has to be added to CLIPS’s fact list be-
fore being analyzed. A function which takes the de-
coded packet as an argument, performs type conver-
sion form C language to CLIPS, so that API func-
tions can be called to assert the packet fact. As it was
discussed on section 3.1.1, a template has to be cre-
ated before fact assertion. The packet fact template
is not created invoking any CLIPS API functions.
Instead, during the initialization process, the packet
fact template is read and executed frommain.clp.

(deftemplate MAIN::packet
(slot proto) (slot nproto)
(multislot timestamp)
(slot srcaddr) (slot srcp)
(slot dstaddr) (slot dstp)
(slot flags) (slot ttl) (slot tos)
(slot id) (slot ipopts)
(slot fragbits) (slot seq)
(slot ack) (slot itype)
(slot icode) (slot icmp_id)
(slot icmp_seq) (slot ip_proto)
(slot fragoffset) (slot dsize)

)

In the template definition,MAIN stands for the
CLIPS module, which will be explained later. Slots
proto, nproto and timestamp, specify respectively
the transport protocol, the network protocol and

2There is a windows clone of libpcap calledwinpcap.

time-stamp which in turn is a multivalue slot con-
taining two values: seconds and microseconds. The
other slots specify packet information and have their
equivalent in Snort’s rule options [21].

4.4 Payload pattern matching

The template structure does not have any slot to
store the packet payload data. There are two reasons
why this data is not converted into a fact slot: the
first is related to performance issues and the second
is related to the implementation of multiple pattern
matching. As payload data length maybe greater
than one thousand bytes, passing it to a fact slot
would be CPU an memory consuming. Payload sin-
gle and multiple pattern matching is done using a
test function instead of looking up for fact instantia-
tions.

The LHS of rule can also test boolean functions.
To avoid a performance decrease in looking for
rule instantiations which match packet header con-
straints and a payload pattern, rules are written us-
ing both fact constraints and a boolean test function.
Packet header data must be checked in the first place
in order to reduce the number of rules that will check
the packet payload contents. The payload pattern
matching operation is then carried out checking a
smaller set of patterns.

4.4.1 Single pattern matching

To perform single pattern matching to packet pay-
load data, a boolean function calledpayload was
added to CLIPS. This function takes one, two or
three arguments. The first argument is the pattern
that will be searched for. The second argument is
the search offset in the packet payload area. The
third argument is the search depth. Single pattern
matching should only be used to test a small num-
ber of bytes, and not the whole packet payload data.
As in Snort, the Boyer-Moore algorithm is used for
single pattern matching[4].

4.4.2 Multiple pattern matching

Multiple pattern matching algorithm allows to si-
multaneously test several patterns against the packet
payload, increasing the detection performance. The
problem is how to do this using CLIPS rules.
The solution was to add a user function called
m_payloadwhich takes the rule identification and
the pattern to be tested as arguments. The rule
identification has to be passed to the function be-
cause there is no way of knowing which rule is be-

5



ing tested. Recall that, in the Rete algorithm only
when the leaf nodes are reached by the token (fact
list change notification), the rules matching all their
conditional elements are known. The pattern test
is not carried out by the function. In fact, it adds
the pattern to an array so that later on, when the
whole conflict set is known, all patterns in the ar-
ray can be simultaneously tested with Aho-Corasick
Algorithm[2]. The activations without none match-
ing patterns are removed from the agenda. The fol-
lowing algorithm describes how the multiple pattern
matching process is accomplished:

function AhoCora-
sic(patternArray,data)
for every activation in agenda
pattern←getPattern(activation,

patternArray)
if pattern exists then
AC_addPattern(pattern)

end for
while matchId←AC_search(data)
activation←getActivation(matchid,

patternArray)
mark activation as do not remove

end while
for every pattern in patternArray

activation←pattern.activation
if activation is not marked then

remove(activation)
end if

end for

The algorithm starts by checking if for each rule in
the agenda there is a correspondent entry in the pat-
tern array. If the entry exists, the pattern has to be
added to the Aho-Corasick’s pattern list. After the
pattern list is built,AC_searchfunction looks up for
a matching. The associated activation is marked so
that it will not be removed. These last two oper-
ations are repeated while there is a matching pat-
tern. All the unmarked activations associated with
patterns in the pattern array are removed from the
agenda.

4.5 Certainty factors

Certainty factors are used as a measure of thrust in
the generated alarms. There are two major sources
of uncertainty in rule based systems: rule contradic-
tion and rule subsumption. Rule contradiction oc-
curs in the presence of two or more rules with the
same LHS and with different RHSs. Rule subsump-
tion occurs when a rule LHS is a subset of another
rule LHS.

On a first approach, letCF =
1

n
be the expres-

sion defining a certainty factorCF, wheren is the
number of rules in conflict on the inference’s engine
last cycle. If there is just one rule on the agenda, the
certainty factor will be one hundred percent, other-
wise certainty will decrease as the number of rules in
conflict increases. The problem with this expression
is that it does not consider subsumption. A rule sub-
sumes another rule if both are in the agenda and one
is more complex than the other. Rule complexity is
evaluated by counting facts constraints and tests on
the LHS of a rule. The expressionCFi =

Ci

n∗CMax

expresses the certainty factor of rulei on both rule
contradiction and rule subsumption, i.e,n reflects
the number of rules in conflict,Ci the complexity of
the rulei andCMax the maximum complexity of all
rules in the agenda. The certainty factor value will
be lower for rules with less complexity, i.e. specific
rules are more reliable than general ones.

To implement this feature acallback function is
required. As soon as the conflict set is obtained, a
function has to be called to evaluate the maximum
complexity and the number of rules in the agenda.

4.6 The agenda callback function

CLIPS has a way of calling a function each time a
rule fires. This is particularly interesting to imple-
ment multiple pattern matching and certainty fac-
tors, since an agenda callback function is required.
The CLIPS’s API functionAddRunFunctiontakes
the function to be called whenever a rule is fired as
an argument. Unfortunately, this is not enough to
create the agenda callback function because the rule
RHS is executed, which is not convinient. The solu-
tion is to create a special rule in filemain.clp,which
tells the inference engine to set the focus on a mod-
ule calledEVENTSeach time a packet is detected.

(defrule MAIN:got_traffic "Anal-
yser got a packet"

(packet)
=>

(focus EVENTS)
)

Module EVENTSis where the event signatures are
defined. When rulegot_traffic is fired, the agenda
callback function is automatically invoked. The fol-
lowing pseudocode defines the algorithm for the
callback function:

function agendaCallback
if length(PayloadPatterns)>0 then
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AhoCora-
sick(PayloadPatterns,Payload)
end if
if length(UriPatterns)>0

PacketHas(Uri) then
AhoCorasick(UriPatterns,Uri)

end if
if there are new activations then

n←0
for every activation in agenda

if complexity(activation)>MaxC
then

MaxC←complexity(activation)
n←n+1

end if
end for

end if
end function

The first twoif structures verify if there are entries
in the pattern arrays. There are two arrays for pat-
terns: one to store information about packet payload
data and the other to store information about HTTP
URIs (Uniform Resource Identifiers). Multiple pat-
tern matching is performed only if there are patterns
in the arrays. In the URI case, an extra test is made
to verify if the current packet has any URI. The
number of activations and the maximum complexity
must be calculated only when there are new rules in
the agenda. If no rules were added to the agenda, re-
calculating the maximum complexity and the num-
ber of activations is not required. If this condition
was not tested, the last rule to be fired would always
have a certainty factor of one hundred percent be-
cause the number of activations would be one and
the maximum rule complexity would be the rule’s
complexity.

5 Writing CLIPS’s rules for net-
work intrusion detection

CLIPS features, such as modules, can be used to
write well structured intrusion detection signatures.
Defining the ruleset as a hierarchical structure re-
duces the number of rules to be checked each time
a packet arrives. For example, if a TCP packet is to
be analyzed, it does not make sense to apply UDP
signature rules to the packet. Therefore, a top level
module calledMAIN is used to define global vari-
ables, the packet template and a rule focusing on
moduleEVENTSeach time a packet is detected.

In moduleEVENTS, actually the main module for
all intrusion signatures, the ruleset is divided into

MAIN
template packet
global variables

EVENTS
protocol rules

TCP_EVENTS
tcp events 

rules

UDP_EVENTS
udp events 

rules

ICMP_EVENTS
icmp events 

rules

HTTP_EVENTS
http events 

rules

FTP_EVENTS
ftp events 

rules

Level 1

Level 2

Level 3

Level 4

Figure 3: Module’s structure for signatures rulesets.

several modules according to TCP/IP protocols. If
the captured packet is TCP, UDP or ICMP the infer-
ence engine should focus on corresponding module
TCP_EVENTS, UDP_EVENTSor ICMP_EVENTS.
Three levels were defined so far: level 1, with mod-
ule MAIN; level 2, with moduleEVENTSand level
3, with modulesTCP_EVENTS, UDP_EVENTSand
ICMP_EVENTS.

One extra level containing rules applied to the ap-
plication layer protocols was also defined to further
reduce the rulesets size (see Figure 3). If the packet
is HTTP, it does not make sense to apply FTP rules
to it. So, on level 3 several rulesets can be specified
according to the packet application protocol. The
HTTP application protocol usually takes port 80, but
if a proxy server is in use, port 3128 or 8080 can be
used instead. Other applications use transient ports,
therefore port numbers cannot be used for explicitly
divide a ruleset. Transparency is obtained through
the definition of global variables. Different config-
urations can be applied depending on the sensor’s
location in the network, by just changing those vari-
ables.

For example, the variables to define HTTP and
FTP ports, could be written using CLIPS statement
defglobal:

(defglobal MAIN
?*http_port* = 3128
?*ftp_port* = 21

)

where the first argument is the module’s name. Vari-
ables are then defined and initialized.

Global variables in CLIPS are only visible within
the module in which they are defined. When defin-
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ing a module, all variables or templates to be im-
ported or exported need to be specified. For exam-
ple, in moduleMAIN, the templatepacketand all
global variables have to be exported so that they can
be used by the other modules. ModuleMAIN is de-
fined by:

(defmodule MAIN
(export deftemplate ?ALL)
(export defglobal ?ALL)

)

In moduleMAIN definition, ?ALL is used to ex-
port all defined templates and variables. The fol-
lowing piece of code defines moduleTCP_EVENTS
importing templatepacketand all global variables
from moduleMAIN.

(defmodule TCP_EVENTS
(import MAIN deftemplate packet)
(import MAIN defglobal ?ALL)

)

As an example, a ruleset for FTP events must have
several rules to express the modules structure. The
first rule was already defined in section 4.6. All the
remaining rules are:

(defrule EVENTS::tcp
(packet (proto tcp))
=>
(focus TCP_EVENTS)
)
(defrule TCP_EVENTS::ftp_event1
"ftp to server”
(packet (dstp ?dp&:

(= ?dp ?*ftp_port*)))
=>
(focus FTP_EVENTS)
)
(defrule TCP_EVENTS::ftp_event2
"ftp to client"
(packet (srcp ?sp&:

(= ?sp ?*ftp_port*)))
=>
(focus FTP_EVENTS)
)

The first rule is included in moduleEVENTSand
is fired each time a TCP packet is detected. When
it fires, moduleTCP_EVENTSgets the focus. In
this module, two rules are required to describe FTP
events. The first one detects a packet sent to an
FTP server, while the second detects a packet sent
to an FTP client. The constraints used compare the

source and destination ports with a previously de-
clared global variable. In the lowest level module,
rules check only event specificities.

This hierarchical module structure leads to a per-
formance increase in real-time network intrusion de-
tection, though some modules may tend to be heavy.
For instance, theHTTP_EVENTSmodule may have
a large number of rules performing packet payload
analysis.

6 Translating Snort rules into
CLIPS rules

Why is it so important to translate Snort rules? Snort
is probably the most well supported network intru-
sion detection system. Being a high performance
lightweight open-source tool with a large number of
rules, running on several platforms fostered its pop-
ularity. Consequently, the number of Snort’s contri-
butions has been increasing, and currently there are
1868 rules defined.

The CLIPS network intrusion detection sensor
was developed using some code from Snort, so that
snort rules and plugins could be easily integrated. To
translate Snort rules into CLIPS rules a program us-
ing flexandbisonparser tools was built. The trans-
lator program reads a Snort ruleset file and converts
it to a CLIPS ruleset.

6.1 Snort rules

Each snort rules has arule headerandrule options.
The rule header contains the action, the protocol, the
source and destination IP addresses and netmasks,
and the source and destination ports. Rule options
are implemented as plugins, therefore new options
can easily be added to snort. These consist of a test
to a packet header field, a payload pattern match-
ing search, response directives or attack classifica-
tion information. A Snort rule for a failed FTP login
is:

alert tcp $HOME_NET 21 -
> $EXTERNAL_NET any
(msg:“FTP failed login”; flags:A+;
content “Login incorrect”;sid:100)

Remember that the packet template was created so
that Snort packet header options could be mapped
into CLIPS’s rule patterns (see section 4.3).
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6.2 Converting rule headers

In CLIPS network intrusion detection sensor, there
is not a rule header. Therefore, rule header com-
ponents such as protocol, source and destination IP
addresses and netmasks, and source and destination
ports, are converted into pattern constraints applied
to thepacketfact. The last example of rule header
would be converted into the following:

(defrule SNORT_EVENTS::s100
(packet

(proto tcp)
(srcaddr ?sa) (dstaddr ?da)
(srcp 21) (dstp ?dp)

A special module calledSNORT_EVENTS is de-
fined to contain the converted rules. Rule identifi-
cation in CLIPS is created resorting to the signature
identification option (sid). The Snort’s rule protocol
is mapped directly intopacket’s slot proto. Source
and destination IP addresses, and destination port
need to be mapped into variables as they will be used
in the RHS of the rule. The source port is converted
into a constraint over thesrcpslot.

6.3 Converting rule options

Rule options are converted mapping Snort options
into constraints applied to thepacket fact slots.
Some of these constraints may be considerably com-
plex. For example, Snortflagsoption besides de-
scribing the flags pattern may use logical operators,
e.g.: + (ALL flag), match on all specified flags plus
any others; * (ANY flag), match on any of the spec-
ified flags; ! (NOT flag), match if the specified flags
are not set in the packet. To translate this complex
option patterns, CLIPS’s predicate functioncheck
was built. Snort’scontentoption is converted into
multiple pattern matching when no offset or depth
are defined. For the example in section 6.2, the com-
plete translated rule is:

(defrule SNORT_EVENTS::s100
(packet

(proto tcp)
(srcaddr ?sa) (dstaddr ?da)
(srcp 21) (dstp ?dp)
(flags ?fl&:(check ?fl "A+")))

(test (m_payload
SNORT_EVENTS::s100
"Login incorrect." ))

=>
(printout t " FTP failed login to " ?sa

" from " ?da ":" ?dp crlf)
(printout t "cf=" (get_rule_cf) crlf))

Rules Fired Rules Alarms Packet Drop

114 2616 1740 78%
1 3655 743 27%

Table 1: ICMP test results - Testing alarms perfor-
mance

7 Real-Time performace results

Several tests were performed to measure the sensor’s
real-time performance. The main goal was to find
how many rules could be supported by the sensor
without packet drops. A real-time network intru-
sion detection sensor should not discard any packet.
Packets may pass by the sensor without being an-
alyzed creating afalse-negativestate. The number
of false-positivealarms issued by the sensor is usu-
ally used as a performance measure [1]. Although
this measure is not relevant to be applied to this sen-
sor because those alarms depend on the signature’s
heuristics quality, and not on the system. Thus,
measuringfalse-positivealarms is more oriented to
less flexible sensors, with hard-coded rules. Here,
the the results are expressed as a packet drop ratio
resulting from measurements involving a Pentium
III 700Mhz laptop, with 128MBytes of RAM, on a
10Mbps ethernet network.

7.1 Stateless rules

A first set of tests was performed using theping
utility with options -f (flood) and-c (count). The
main goal of this test was to find out which were the
sensor’s major sources of performance degradation
when applying simple heuristics, i.e., without state
information (snort like rules). One thousand ICMP
Echo packets were sent to a host running the CLIPS
Network Intrusion Detection Sensor. These results
are not specific for ICMP traffic as the rules in use
have a similar structure to TCP and UDP rules (both
test the packet header fields and payload data).

Table 1 compares the results foricmp and icmp-
info snort rulesets with the results using only one
rule that fires every time an ICMP ping is detected.
The results (first row in table) show that using com-
plete snort rulesets leads to a major performance de-
crease due to existing several rule instances firing
simultaneously. In Snort, only the first rule match-
ing its conditional elements is fired. The second row
shows that using only one rule the packet drop ra-
tio is still high (27%). The reason of such a low
performance is related to the alarm function exe-
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Rules Fired Rules Packet Drop

107 2970 26%
105 3156 21%
103 3700 7%
101 3862 3%
99 4000 0%

Table 2: ICMP test results - removing payload pat-
tern matching rules

Rules Fired Rules Packet Drop

107 2970 26%
100 3084 23%
23 3152 21%

Table 3: ICMP test results - removing rules with no
payload pattern matching

cution. The results also show that the number of
fired rules and the number of generated alarms are
distinct. This is because of module focus rules fir-
ing and due to the fact that payload pattern match-
ing rules are always fired by CLIPS inference en-
gine. Only then, when the agenda callback function
is invoked, the non-matching rules instances are re-
moved.

Table 2 comparesicmp andicmp-infosnort rule-
sets by removing rules which check the packet pay-
load. From an initial ruleset of 114 rules, 7 rules
were removed so that none would fire. There are 23
rules using payload pattern matching in their LHSs.
The first row in Table 2 shows a packet drop of 26%
when 107 rules are applied. By removing 2 more
rules, the packet drop was 21%, and with a ruleset of
105 that value dropped down to 7%. By removing 2
more rules, packet drop was 3%. For 99 rules, there
is no packet dropping. Table 3 shows the impact on
packet loss, when removing rules which do not per-
form any packet payload pattern matching. By re-
moving 7 rules without any payload pattern match-
ing to the 107 rules, the packet drop was 23%. After
removing a large set of rules (77) with no payload
tests, the packet drop was 21%.

There are two major reasons for performance
degradation. The first one is related to the alarm
function execution, where its execution time inter-
val is responsible for several packets not to be ana-
lyzed. The other one is related to the payload pat-
tern matching process. Even using a fast multiple
pattern matching algorithm[2], the performance bot-
tleneck remains. Reducing the ruleset by removing

Attack Max Rst Alarms Packet drop

Nmap 100 8 39%
Nmap 500 2 24%
Nmap 1000 1 6%
None 100 0 0%

Table 4: Port scan test

non payload pattern matching rules from 107 to 23
rules (those that perform payload pattern matching),
there is only a 5% reduction in packet drop ratio.
Removing 8 payload pattern matching rules we ob-
tained 0% of packet drop. This shows that the sensor
supports about 15 (23-8) rules with payload pattern
matching simultaneously in the agenda.

7.2 Statefull rules

Statefull rulesets use the forward chaining mecha-
nism creating several states in the detection process.
Each state is an inference cycle. It is important to
know the sensor’s performace using such a ruleset.
As a test example, a ruleset to detect a TCPsyn scan
was created. Some utility tools were used to gener-
ate the traffic samples.Nmapport scanner produced
the TCPsyn scan. Tcpreplaywas used to send ar-
bitrary TCP traffic.Tcpreplayreads aTcpdumpraw
packet file to inject traffic into a network interface.
The normal TCP traffic sample was generated using
the iperf tool.

Two distinct scenarios were considered: testing
the packet drop ratio when theNmap tool is used
to perform a port scan to 1525 ports in a 10Mbps
ethernet network; testing the packet drop rate when
applying the port scan ruleset to a normal traffic pat-
tern.

The port scan ruleset detects a TCPsyn scanby
counting the number of reset connections from a cer-
tain source to a destination host within a specified
interval. Two variables had to be defined: the maxi-
mum reset connections and the time interval (set by
default to 60 seconds).

The values in Table 4 result from applying differ-
ent configurations to the port scan heuristics. Note
that as the maximum TCP reset packets allowed is
increased, the packet drop ratio decreases. There are
two reasons for that. One is the number of gener-
ated alarms. As discussed before, alarm issuing is
an operation responsible for significant performance
degradation. The other is that by allowing a larger
number of resets, the test to verify if those reset
packets timestamp are within the specified time in-
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terval is executed less times, which means that, most
of the time only one cycle is performed by the in-
ference loop. By applying TCPsyn scanrules to
normal TCP traffic, there is no performance degra-
dation due to the low number of reset connections in
a normal traffic pattern, causing less rules to fire.

8 Conclusions

Building a low cost network intrusion detection sen-
sor by using public domain tools and libraries is a
possible and feasible solution. In this paper, an ex-
ample of such a sensor, developed using NASA’s
CLIPS production system shell and adapting Snort
code and data structures is proposed. The sensor
supports complex heuristics, keeping event related
information in a fact list and uses forward chaining
reasoning to reach a conclusion. If several conclu-
sions are reached, certainty factors are used to as-
sess those conclusions’ credibility. Multiple pattern
matching was used to improve the payload analy-
sis performance. A Snort ruleset translator was built
so that those rulesets could be used by the sensor.
Unfortunately, there are still some performance bot-
tlenecks. An inference engine is much more com-
plex than a simple pattern matching engine. More
efficiency could be obtained by changing the CLIPS
inference engine to support built-in multiple pattern
matching. Although CLIPS is not a high perfor-
mance tool oriented to real-time use, it works fine
with previous Tcpdump captured traffic.

Future work includes improving the sensor’s per-
formance by using a hybrid algorithm for multiple
pattern matching as in [? ]. CLIPS may be extended
just by mapping C language functions into CLIPS
functions. Interoperability features can be added by
building user functions for IDMEF message manip-
ulation [6] and IDXP protocol implementation so
that the alarms can be exchanged with other Intru-
sion Detection Systems[7].
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Appendix

A Heuristics for TCP syn scan

;**********************
; TCP - PORT SCANS *
;**********************
(defglobal TCP_EVENTS

?*maxRsts* = 50
?*maxRstsInterval* = 60

)
(deftemplate TCP_EVENTS::rst

(multislot ts)
(slot src)
(slot dst)
(slot count (default 0))

)
(defrule TCP_EVENTS::rst_counter_init

?fid<-(packet (proto tcp) (timestamp $?tm1) (srcaddr ?sa)
(dstaddr ?da)
(flags ?fl&:(check ?fl "R*")) )

(not (rst (src ?sa) (dst ?da) (ts $?tm2) (count ?c) ))
=>

(assert (rst (src ?sa) (dst ?da) (ts $?tm1) (count 1)))
(retract ?fid)

)
(defrule TCP_EVENTS::rst_counter_count

?fid<-(packet (proto tcp) (timestamp $?tm2) (srcaddr ?sa)
(dstaddr ?da)
(flags ?fl&:(check ?fl "R*")) )

?fid2<-(rst (src ?sa) (dst ?da) (ts $?tm1) (count ?c))
(test (between $?tm2 $?tm1

(ts_add $?tm1 (create$ ?*maxRstsInterval* 0)))
)

=>
(modify ?fid2 (count (+ ?c 1)))
(retract ?fid)

)
(defrule TCP_EVENTS::port_scan_detected

?fid<-(rst (src ?sa) (dst ?da) (ts $?tm1) (count ?c&:(> ?c ?*maxRsts*)))
=>

(retract ?fid)
(alarm $?tm1 ?da n ?sa n "TCP Syn scan" "Scan" (get_rule_cf)

(create$ "http://www.insecure.org"))
)

TCP syn scan is a port scan technique often referred to as "half-open" scanning, because it does not open a
full TCP connection. It sends asynpacket, as if it was opening a real connection, and waits for aresponse.
A syn-ackindicates an active port. Arst is indicative of a non-listener. If asyn-ackis received, arst is
immediately sent to tear down the connection (actually the OS kernel does this). The primary advantage to
this scanning technique is that few sites will log it.

The heuristic to detect TCP syn scan is very simple. There aretwo threshold variables corresponding
to the maximum number of resets and the maximum time intervallength. The number of resets within the
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interval are counted for a certain source and destination. If the counter exceeds the maximum number of
resets, a TCP syn scan is assumed by the sensor and an alarm is generated.

B Heuristics for Brute Force FTP Attack

(defglobal FTP_EVENTS
?*maxFailedLogins* = 3
?*maxFailedLoginsInterval* = 60

)
(deftemplate FTP_EVENTS::failed_logins

(multislot ts)
(slot src)
(slot dst)
(slot count (default 0))

)
(defrule FTP_EVENTS::failed_ftp_login_count_init

?fid<-(packet (proto tcp) (srcaddr ?sa) (dstaddr ?da) (dstp ?dp)
(srcp 21) (flags ?fl&:(check ?fl "PA")))

(test (m_payload failed_ftp_login_count_init "Login incorrect." ))
=>

(assert (failed_logins (src ?sa) (dst ?da) (ts $?tm1) (count 1)))
(retract ?fid)

)
(defrule FTP_EVENTS::failed_ftp_login_count

?fid<-(packet (proto tcp) (srcaddr ?sa) (dstaddr ?da) (dstp ?dp)
(srcp 21) (flags ?fl&:(check ?fl "PA"))

?fid2<-(failed_logins (src ?sa) (dst ?da) (ts $?tm1) (count ?c))
(test (between $?tm2 $?tm1

(ts_add $?tm1 (create$ ?*maxFailedLoginsInterval* 0)))
(test (m_payload failed_ftp_login_count "Login incorrect." ))

=>
(modify ?fid2 (count (+ ?c 1)))
(retract ?fid)

)
(defrule FTP_EVENTS::ftp_brute_force

?fid<-(failed_logins (src ?sa) (dst ?da) (ts $?tm1)
(count ?c&:(> ?c ?*maxFailedLogins*)))

=>
(retract ?fid)
(alarm $?tm1 ?da n ?sa n "FTP brute force attempt" "FTP"

(get_rule_cf)
(create$ none)

)
)

A FTP brute force attack is an attempt of illegal access to an FTP server by trying several combinations of
passwords. The heuristic to detect it is very similar to the TCP syn scan heuristic. There are two variables:
maximum tolerated failed logins and the time interval length. If the number of failed logins within the
interval exceeds the maximum value allowed, an alarm is issued.
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C Example of rules translated from Web-cgi Snort ruleset

; RULE to detect "WEB-CGI HyperSeek directory traversal attempt"
(defrule SNORT_EVENTS::s803

(packet (proto tcp) (timestamp $?ts) (srcaddr ?sa) (dstaddr ?da)
(srcp ?sp) (dstp 80) (flags ?fl&:(check ?fl "A+")) )

(test (m_payload s803 "%00"))
(test (m_uri_check s803 "/hsx.cgi"))

=>
(alarm $?ts ?sa ?sp ?da $s

"WEB-CGI HyperSeek directory traversalattempt"
"web-application-attack" (get_rule_cf)
(create$ "cve,CAN-2001-0253" "bugtraq,2314" )

)
)
; RULE to detect "WEB-CGI SWSoft ASPSeek Overflow attempt"
(defrule SNORT_EVENTS::s804

(packet (proto tcp) (timestamp $?ts) (srcaddr ?sa) (dstaddr ?da)
(srcp ?sp) (dstp 80) (flags ?fl&:(check ?fl "A+"))
(dsize ?ds&:(> ?ds 500))

)
(test (m_payload s804 "tmpl="))
(test (m_uri_check s804 "/s.cgi"))

=>
(alarm $?ts ?sa ?sp ?da $s

"WEB-CGI SWSoft ASPSeek Overflow attempt"
"web-application-attack" (get_rule_cf)
(create$ "bugtraq,2492" )

)
)
; RULE to detect "WEB-CGI webspeed access"
(defrule SNORT_EVENTS::s805

(packet (proto tcp) (timestamp $?ts) (srcaddr ?sa) (dstaddr ?da)
(srcp ?sp) (dstp 80) (flags ?fl&:(check ?fl "A+"))

)
(test (m_payload s805 "WSMadmin"))
(test (m_uri_check s805 "/wsisa.dll/WService="))

=>
(alarm $?ts ?sa ?sp ?da $s

"WEB-CGI webspeed access"
"attempted-user" (get_rule_cf)
(create$ "arachnids,467" )

)
)
; RULE to detect "WEB-CGI yabb access"
(defrule SNORT_EVENTS::s806

(packet (proto tcp) (timestamp $?ts) (srcaddr ?sa) (dstaddr ?da)
(srcp ?sp) (dstp 80) (flags ?fl&:(check ?fl "A+"))

)
(test (m_payload s806 "../"))
(test (m_uri_check s806 "/YaBB.pl"))

=>
(alarm $?ts ?sa ?sp ?da $s

"WEB-CGI yabb access"
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"attempted-recon" (get_rule_cf)
(create$ "arachnids,462" )

)
)
; RULE to detect "WEB-CGI wwwboard passwd access"
(defrule SNORT_EVENTS::s807

(packet (proto tcp) (timestamp $?ts) (srcaddr ?sa) (dstaddr ?da)
(srcp ?sp) (dstp 80) (flags ?fl&:(check ?fl "A+"))

)
(test (m_uri_check s807 "/wwwboard/passwd.txt"))

=>
(alarm $?ts ?sa ?sp ?da $s

"WEB-CGI wwwboard passwd access"
"attempted-recon" (get_rule_cf)
(create$ "bugtraq,649"

"cve,CVE-1999-0953"
"arachnids,463"

)
)

)

The current number of rules translated is over 1200. Only feware showed hero so that they can be syntac-
tically compared with other network intrusion detection systems rules.

D The main.clp file

(defmodule MAIN
(export deftemplate ?ALL)

)
(deftemplate MAIN::packet

(slot proto (default ""))
(slot nproto (default ""))
(multislot timestamp (default 0 0))
(slot srcaddr (default ""))
(slot srcp (default 0))
(slot dstaddr (default ""))
(slot dstp (default 0))
(slot flags (default "0"))
(slot ttl (default 0))
(slot tos (default 0))
(slot id (default 0))
(slot ipopts (default ""))
(slot fragbits (default ""))
(slot seq (default 0))
(slot ack (default 0))
(slot itype (default 0))
(slot icode (default 0))
(slot icmp_id (default 0))
(slot icmp_seq (default 0))
(slot ip_proto (default 0))
(slot fragoffset (default 0))
(slot dsize (default 0))
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)
(defrule MAIN:got_traffic "Analyser received a traffic unit"

(declare (salience 3000))
(packet)

=>
(focus EVENTS)

)

This is the main rule file. A template specifying the packet structure and a special rule which fires each
time a packet is detected by the analyzer are defined. CLIPS agenda callback function is invoked whenever
a rule fires. This special rule (got_traffic) was built to force a rule firing so that all the activations inconflict
could be known.

E The configuration file conf.clp

; sets the ip defrag preprocessor (based on the snort preproc essor)
(frag2)
; sets the URI preprocessor (based on the snort preprocessor )
(http_decode_ports "80,3128")
; sets multipattern matching case insensitive
(set_mp_matching_nocase)
; Main rule file
(load "main.clp")
; Protocol structured rules
(load "events.clp")
(load "icmp_events.clp")
(load "tcp_events.clp")
(load "ftp_events.clp")
(load "http_events.clp")
; TCP syn scan
(load "port_scan.clp")
; Snort translated rules
(load "snort_events.clp")
(load "ddos.clp")
(load "dos.clp")
(load "dns.clp")
(load "exploit.clp")
(load "misc.clp")
(load "policy.clp")
(load "rpc.clp")
(load "scan.clp")
(load "shellcode.clp")
(load "tftp.clp")
(load "icmp-info.clp")
(load "icmp.clp")
(load "backdoor.clp")
(load "finger.clp")
(load "info.clp")
(load "netbios.clp")
(load "rservices.clp")
(load "smtp.clp")
(load "sql.clp")
(load "telnet.clp")

17



(load "virus.clp")
(load "porn.clp")
(load "x11.clp")
(load "ftp.clp")
(load "web-misc.clp")
(load "web-attacks.clp")
(load "web-cgi.clp")
(load "web-coldfusion.clp")
(load "web-frontpage.clp")
(load "web-iis.clp")
(load "web-iis2.clp")

This file defines which preprocessors and rulesets will be used by the sensor.
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