
Computing and Informatics, Vol. 26, 2007, 543–561

AN ONTOLOGY FOR NETWORK SERVICES

Pedro Aĺıpio, José Neves, Paulo Carvalho

University of Minho
Department of Informatics
4715-057 Braga, Portugal
e-mail: {pma, jneves, pmc}@di.uminho.pt

Revised manuscript received 20 February 2007

Abstract. Most of the network service specifications are implemented using rela-
tional databases or XML schemas. However, those specifications are not flexible
and expressive enough to be extended with new service classes, different corporate
policies, network configurations and deployment strategies; thus, most of the QoS
management operations are implemented as hard-coded software components. This
paper presents a novel approach in the specification of IP network services, using
F-logic knowledge representation framework, aiming to include, in the same speci-
fication, the high-level service requirements, the network model and the necessary
operations for the deployment of multiple network services.

Keywords: Network service specification, multiservice ip networks, network service
management

1 INTRODUCTION

Many network service management tasks such as service administration, service
quality monitoring, service configuration, and resource optimization are often per-
formed manually. This work can be time-consuming and very sensible to human
errors. Moreover, it requires a growing number of highly skilled personnel, bringing
huge costs to Internet Service Providers (ISPs).

Frequently, ISPs network services are expressed through Service Level Agree-
ments (SLAs), where a technical part called Service Level Specification (SLS) is
included. Several proposals of SLA and SLS specification have been presented, fos-
tering a common ground for interoperability among domain and interdomain net-

544 P. Aĺıpio, J. Neves, P. Carvalho

work service configuration agents. However, none of those specification is expressive
enough to include the necessary knowledge to map service requirements into network
configurations.

A formal specification of network services semantics is required as the build-
ing blocks to create the reasoning mechanisms to allow their implementation and
deployment. The explicit or formal characterization of atomic entities (concepts)
in a domain and relations that may be established among them is called an onto-
logy [1], i.e., an ontology defines a common vocabulary for information interchange in
a knowledge domain. It includes machine-interpretable definitions of basic concepts
in the domain and relations among them.

Here, a novel approach to SLSs specification and management is presented based
on an ontology and using the F-logic (FL) [2]. The proposed framework includes
several valuable features for both specification and implementation of a network
service management engine. FL allows the development of frame based knowledge
specifications including the concepts and relations necessary to reason about network
services instances. Furthermore, meta-predicates may be included to check the
network services instances consistency proving the system correctness.

This paper has the following structure: related work and state-of-the art con-
cerning network service specification is presented in Section 2; the concepts and rela-
tions used to model service vocabulary and configuration mappings are explained in
Section 3; the ontology specification language (F-logic) is presented in Section 4; the
formal specification using F-logic is included in Section 5, and finally the conclusions
and future work are summarized in Section 6.

2 RELATED WORK

The research community on network services management arena has been com-
mitted to SLS definition and management [3, 4, 5, 6]. Commonly, pure XML
is the preferred network services specification language. However, XML has well
known limitations, namely in creating non-hierarchical relations between elements.
Lately, ontologies are being mostly used to bring semantics into the World-Wide
Web (WWW). The WWW Consortium (W3C) is developing the Resource Descrip-
tion Framework (RDF) [7], a language for encoding knowledge on Web pages to
make it understandable to electronic agents searching for information. The Defense
Advanced Research Projects Agency (DARPA), in conjunction with the W3C, is de-
veloping DARPA Agent Markup Language (DAML) by extending RDF with more
expressive constructs aimed at facilitating agent interaction on the Web [8]. More
recently, the W3C Web Ontology Working Group is developing OWL (Web Onto-
logy Language) [9] based on description logic, maintaining as much compatibility as
possible with the existing languages, including RDF and DAML.

The Service Oriented Architecture (SOA) community is also using ontology
based languages to specify semantic web services, such as DAML-S [10], OWL-S [11],
Semantic Web Services Language (SWSL) [12] and Web Service Modeling Language

An Ontology for Network Services 545

(WSML) [13], focusing on web services discovery, composition, choreography and
orchestration.

Most of the ontology specification languages rely on XML and RDF only as un-
derneath platform [8, 14, 9]. As a result, these ontologies may be validated, parsed or
transformed with regular XML tools. Nevertheless, reasoning (queries, verification
and taxonomical inference) is often performed by knowledge based systems using
other formalisms. Several of these tools and formalisms, such as Flora-2 based on
the FL and Transaction Logic (TR) frameworks, integrate frames, rules, inheritance,
and transactions, consisting of far more powerful languages than those exclusively
designed for the Semantic Web or for the Semantic Web Services. The main draw-
back of these languages is interoperability, i.e., exchanging information with other
systems or software components. Nevertheless, efforts are being made to develop
a FL XML Schema and tools to transform XML documents into FL [15] which may
be used to overcome this problem. A Java package is also being developed for Flora-2
and it will allow using it as a reason engine for knowledge based desktop or web
applications. Furthermore, the Web Service Modeling Language (WSML), which is
based on the FL and TR, and the Web Service Modeling eXecution environment
(WSMX) [16] are also in progress.

As WSML and WSMX are still in progress, the present proposal follows a FL
based approach, which may be implemented and executed by the Flora-2 system,
including features that allow reasoning over concepts, relations and changes of state,
consisting of a flexible and robust ground for specifying and implementing autonomic
and adaptive service management tasks.

3 NETWORK SERVICE SPECIFICATION ONTOLOGY

The main objective of the ontological representation of network services is to cre-
ate a common vocabulary, including a service classification, and to map service
attributes into network configurations. This ontology may be viewed from three
perspectives: (i) the network service classification; (ii) the service level specification;
(iii) the deployment of the network services. Although we focus on class-based net-
works such as the Differentiated Services (DiffServ), and follow most of the Diffserv
configuration guidelines recommendations [17], we keep this specification abstract
enough to allow the deployment of network services in other network architectures
providing Quality of Service (QoS).

3.1 Service Classification

Network traffic can be classified in three major groups: (i) Network Control for
routing and network control function; (ii) Operations, Administration and Manage-
ment (OAM) for network configuration and management functions; and (iii) the
User/Subscriber traffic group for ISP functions which may be divided into ten dif-
ferent categories [17], namely:

546 P. Aĺıpio, J. Neves, P. Carvalho

Telephony service – for applications that require very low delay variation and
are of constant rate, such as VoIP (Voice over IP) and circuit emulation over IP
networks;

Signaling service – for peer-to-peer and client-server signaling and control func-
tions using protocols such as SIP, SIP-T, H.323, H.248, and MGCP;

Multimedia Conferencing service – for applications that require very low de-
lay, and have the ability to change encoding rate (rate adaptive), such as H.323/
V2 and later video conferencing service;

Real-time Interactive service – interactive variable rate inelastic applications
that require low jitter, loss and very low delay, such as interactive gaming ap-
plications that use RTP/UDP streams for game control commands, video con-
ferencing applications that do not have the ability to change encoding rates or
mark packets with different importance indications;

Multimedia Streaming service – for variable rate elastic streaming media ap-
plications where a human is waiting for output and where the application has
the capability to react to packet loss by reducing its transmission rate, such as
streaming video and audio, or web cast;

Broadcast Video service – for inelastic streaming media applications that may
be of constant or variable rate, requiring low jitter and very low packet loss,
such as broadcast TV and live events, video surveillance and security;

Low Latency Data service – for data processing applications where a human is
waiting for output, such as web-based ordering, or Enterprise Resource Planning
(ERP) application;

High Throughput Data service – for store and forward applications such as
FTP, or billing record transfer;

Standard service class – for traffic that has not been identified as requiring dif-
ferentiated treatment within the network and is normally referred as best effort;

Low-Priority Data service class – packet flows where bandwidth assurance is
not required.

Although services are classified into ten groups (Figure 1), some are used by the
same application category. In this model, four application categories are considered:
(i) Application Control Category; (ii) Media-Oriented Category; (iii) Data Category;
and (iv) Best Effort Category. Figure 1 also illustrates the relationship between an
SLA and a service specification, where each SLA may in fact include several different
service classes. This is the typical case of applications and services which require
signaling with the network (e.g. VoIP).

3.2 Service Level Specification

As illustrated in Figure 2, an SLS should include the following sections: (i) the traffic
classification section, defining the fields which identify an individual or aggregate

An Ontology for Network Services 547

!"#$%&"

!"#

!"#$ % #'(%)##% *!"#$%&"
!# # !"#$%&"

!""#!&'"&#%'"#!"#$%&"

!"#$

! $"#"%&'!(%

!

!

!"#$

!"#$

!#% $% &$"#)%% "% !"#$%&"

!%# $% $#% &# $+&#,$#$!"#$%&"

"% $ "$#")&),$#$!"#$%&"

&*#%& "% %$(%)*"#")&%)# !"#$%&"

&*#%& "% %$!##"$& %)# !"#$%&"

!"$*% %& "$)#"#$&#%$"!"#$%&"

!%#)$*%)# !"#$%&"!#$)% $#% !"#$%&"

% "*"+$%))!"#$%&"

!"#$

!"#$

!"#$

!"#$

!"#$

!"#$

!"#$
!"#$

!"#$

"% $ $#%% #%#)!"#$%&"

!"#$

,
$
#$
(
$
#"
#
%
#)

!""#% **% ##($#"# % #)

#
"
%
%$
&!
#%
"
)
#"
%
,(
$
#"
#
%
#)

!"#$

!"#$

!"#$

!"#$

!"#$

!"#$

!"#$

++*%&$#%%)(%)##% *($#"# % #)

!"#$

!"#$!"#$

Fig. 1. User/subscriber services classification

flow; (ii) the traffic conditioning section, containing rules to identify in or out-of-
profile traffic; (iii) the scope of the service, defining the boundaries of the region
over which the service will be enforced and (iv) the expected QoS performance
parameters. Although service scheduling and a service reliability sections could also
be considered at SLS level, in our opinion, these parameters should occur at SLA
level instead, as essentially they are technical service issues. As referred above, in
many cases, a service may trigger or be divided, in technical terms, into several
network services. Detailing each of the SLS’s sections, we have:

Traffic classification is required to identify the network service traffic through
a traffic classification key, which may consist of a microflow (identified by a com-
bination of a Source Address, a Destination Address, a Source Port and a Desti-
nation Port) or a macroflow. A macroflow is an aggregate flow aiming at a spe-
cific service and may be specified in terms of: (i) a set of microflows – in this
case, pairs of IP addresses (Source Address and Destination Address), transport
information (Source Port, Destination Port) and Protocol Id; (ii) marking infor-
mation (e.g. one or a set of DiffServ Codepoints (DSCPs)) – identifying traffic
aggregates entering the domain; (iii) other IP information such as Protocol Id
and IPv6 FlowLabel; (iv) as any set combining these fields. The classifier action
usually consists of marking traffic as belonging to a certain service class. The
deployment of this action depends on the underneath QoS architecture. While

548 P. Aĺıpio, J. Neves, P. Carvalho

User/Subscriber
Service

Classifier
Expected

QoS
Service
Scope

1

1

hasClassifier

1

1

hasServiceScope

0,1

1

hasExpectedQoS

Traffic
Conditioner

0,1

1

hasTrafficConditioner

Ingress
Classifier

Egress
Classifier

is a

is a

1

1

hasPacketClassificationKey

Packet
Classification

Key

1

1

hasAction

Classifier
Action

is a

Token
Bucket

TR3CM

is a is a

. . .

1

*

hasIngress

Network
Interface

1

*

hasEgress

Fig. 2. Service level specification

in a Diffserv domain, it is deployed by assigning a value to DSCP field within IP
packets, in a MPLS domain, it is deployed by assigning a label switching path
to the packets.

Traffic conditioning. Traffic conditioning includes a conformance algorithm that
identifies in-profile and out-of-profile traffic. The Diffserv configuration guide-
lines recommend a Single Rate Burst Size (Token Bucket) and a Two Rate Three
Color Marker (TR3CM) [18] as possible conformance algorithms depending on
the type of service. Nevertheless, in the present proposal we consider the pos-
sibility of extending the specification with other algorithms without affecting
its consistency. Depending on the conformance algorithms, one or more actions
may be applied to out-of-profile traffic. These actions may be, among others,
changing the packets’ drop precedence, de-promoting traffic to a lower QoS class,
or dropping all out-of-profile packets.

Scope. The boundaries of topological regions must be specified as they are enforce-
ment locations for service traffic classification and conditioning. It is expressed
through a set of ingress and egress interfaces, denoting the entry and exit points
of the network domain, respectively. We prefer to use the concept of ingress and
egress interfaces instead of nodes because edge nodes have at least two interfaces,
connecting the node to its network domain and to its neighbor domain.

Expected QoS. The expected QoS parameters express the required QoS to be
provided by the network and are expressed by network performance parameters

An Ontology for Network Services 549

such as: the maximum interpacket delay, interpacket delay variation, packet loss
ratio and throughput. These parameters take qualitative values as recommended
in the Diffserv configuration guidelines.

3.3 Network Service Deployment

The deployment of network services requires the definition of a set of network config-
uration rules and operations in order to establish and provide a consistent network
behavior for traffic crossing an ISP domain. Although the location and configuration
of traffic classifiers and conditioners may be obtained directly from the SLSs, the
node forwarding behavior (e.g. Per Hop Behavior (PHB) in Diffserv) related confi-
gurations are dependent on the QoS architecture and must be specified in a network
configuration model. This model includes network topology information, each node
components information and mapping relations required to deploy each service class.

S
e
rv

ic
e

C
la

s
s
ifi

e
r

1

1

scope

S
e
rv

ic
e
 S

c
o

p
e

Egress
Interface

1

*

hasClassifiers

Edge
Interface

is_a

T
ra

ffi
c

C
o

n
d

itio
n

e
r

1

*

hasTraffic

Conditioners
1

1

conditioning

1
1

classification

Ingress
Interface

1

*

hasClassifiers

1

*
hasTraffic

Conditioners

is_a

Interface

is_a

Core
Interface

is_a

isConnectedWith

0

*

Queue

hasQueue

1

0

FIFO
Queue

QoS
Queue

is a is a

Priority
Queue

Rate
Queue

is a

is a

AQM

hasAQM
1

0

Node

hasInterface

*
1

hasCoS
*

0

has
CoS

Fig. 3. Network configuration model

As shown in Figure 3, queues are associated with interfaces and interfaces with
nodes. Ingress and egress interfaces are connected to classes Classifier and Traffic
Conditioner while core interfaces are not. However, as Edge Interface is a subclass
of Interface, it will also be connected to the class Queue, as a consequence of the
principle of class generalization.

Associated with each node interface, there may be priority queuing and/or rate
queuing disciplines. A priority queuing system is a combination of a set of queues

550 P. Aĺıpio, J. Neves, P. Carvalho

and a scheduler that empties them in priority sequence. Before dispatching a packet,
the scheduler inspects the highest priority queue, and if there is data present returns
a packet from that queue. Similarly, a rate-based queuing system is a combination
of a set of queues and a scheduler that empties each of them at a specified rate,
i.e., allocating, for instance, a proportional share of the interface bandwidth. In the
proposed model, queues represented by the class Queue may be specialized into prio-
rity or a rate queue, represented by the subclasses PriorityQueue and RateQueue,
respectively.

In order to prevent network congestion, queues may implement congestion con-
trol through Active Queue Management (AQM). AQM includes a variety of pro-
cedures that use specific packet dropping or marking to manage the depth of
a queue.

4 F-LOGIC OVERVIEW

Although there are several ontology specification languages as previously mentioned
in Section 2, F-logic [19] was chosen as the formal specification language for the
network service ontology. In fact, most of those languages are not adjusted to
general knowledge specification, as they focus on the Semantic-Web, being rather
limited in their features.

F-logic, where F stands for frame, combines the advantages of the conceptual
high-level approach typical of frame-based languages and the expressiveness, the
compact syntax, and the well defined semantics of mathematical logic. The original
features of F-logic include signatures, object identity, complex objects, methods,
classes and inheritance. In addition, some F-logic implementations include other
features, e.g., Flora-21 an F-logic implementation, support general rules (includ-
ing recursive rules and rules with negation in the rule body), common-sense rea-
soning, and multiple inheritance. It may also include meta-programming in the
style of HiLog, logical updates in the style of Transaction Logic, and dynamic mo-
dules.

F-logic uses first-order variable-free terms to represent Object IDentity (OID),
e.g., John and father(Mary) are possible Ids of objects. Objects can have attributes
as it is illustrated by the following example:

Mary[spouse → John, children → {Alice, Nancy}]
Mary[children → Jack]

These formulae are called F-logic molecules. The first formula denotes that object
Mary has an attribute spouse whose value is the OID John. It also denotes that the
attribute children is set-valued and its value is a set that contains two OIDs: Alice
and Nancy. Note that sets do not need to be specified all at once. For instance, the
second formula above says that Mary has an additional child, Jack.

1 http://flora.sourceforge.net

An Ontology for Network Services 551

While some attributes of an object are specified explicitly (e.g. facts), other
attributes can be defined using deductive rules. For instance John[children →
{Alice, Nancy, Jack}] may be derived using the following deductive rule:

∀Y,C,X ?X[children → ?C] ←?Y [spouse →?X, children → ?C]

F-logic objects can also have methods, which are functions that take arguments.
For instance, John[grade(net, cs) → 100, classes(cs) → {prog, net}] denotes that
John has a method, grade, whose value on the arguments net (Networking class iden-
tifier) and cs (Computer Science course identifier) is 100; it also has a set-valued
method courses, whose value on the argument cs is a set of OIDs that contains
course class identifiers net and prog. Like attributes, methods can be defined using
deductive rules.

The F-logic syntax for instances is instance :: class and for class hierarchies
is subclss :: class. For example, John : student, means that John is an instance
of class student, while student :: person, denotes that student is a specialization of
a person. Since classes are treated as objects, it is possible for the same object
to be considered as a class in one formula and an instance in another, e.g., in
the formula student : class, the symbol student is considered an instance, while in
student :: person it is considered a class.

F-logic also provides means for specifying schema information through signature
formulae. For instance, person[spouse{0 : 1} ⇒ person, name{0 : 1} ⇒ string, child
{0 : ∗} ⇒ person] denote a signature formula stating that class person has three
attributes, the attributes spouse and name, which may have one value or none
(indicated by the cardinality constraint 0 : 1), and a set-valued attribute child,
which may have any value or none (indicated by the cardinality constraint 0 : ∗). It
further says that the first attribute returns instances of type person, the second of
type string, and the last returns sets of objects such that each instance in the set is
of type person.

5 NETWORK SERVICE SPECIFICATION

The network service specification follows the model described in Section 3, and it
is organized in terms of four parts: (i) consistency checking including the predi-
cates to verify cardinality and type checking; (ii) the ontology schema, defining the
class hierarchy and method signatures; (ii) the default values for some of the class
instances; and (iv) inferred relations and classes.

5.1 Consistency Checking

As Flora-2 does not include cardinality neither type checking, the following predi-
cates were added to the specification for those purposes:

(1) getCardinality(?O?M, ?Count) ←
?Count = count{?V al| ?O[?M →?V al]}.

552 P. Aĺıpio, J. Neves, P. Carvalho

(2) validCardinality(?O, ?M) ←
cardinality(?IO?M, ?Min, ?Max)

getCardinality(?O, ?M, ?Count) ∧
?Min =<?Count ∧
?Max >=?Count.

(3) validCardinality(?O) ←
cardinality(?O, ?M, ?Min)

getCardinality(?O, ?M, ?Count) ∧
?Min =<?Count.

(4) validType(?O) ←
?O[?M →?V], ?O[?M ⇒?D], ?V :?D.

Predicate (1) obtains, through variable ?Count, the cardinality of a method (or
attribute) given by variable ?M , of an object (or instance) given by variable ?O. The
cardinality is obtained by invoking the predicate count that counts all the elements
of a set containing all the values that meet the formula ∃?V al.?O[?M →?V al], i.e.,
all the values bounded to the method ?M of the object ?O.

Cardinality validation is performed by invoking predicates (2) and (3). These
predicates check two types of facts with different signatures. While predicate (2)
obtains cardinality(?O, ?M, ?Min, ?Max) facts with 4 arguments, an object given
by ?O, a method given by ?M, the minimum and the maximum cardinality given
by ?Min and ?Max, respectively, predicate (3) obtains cardinality(?O, ?M, ?Min)
facts where only the minimum cardinality is included because it is used to specify
unbounded maximum cardinality.

Predicate (4) is used for type checking. A value bounded to a method is valid
if its data type (or class) is the one specified in the method schema. Thus, the
predicate takes an object as argument given by ?O. The formula ?O[?M →?V]
gets the values ?V bounded to the methods ?M of an object O. Then, the formula
?O[?M ⇒?D] gets the data type (class) ?D of method ?M defined for object ?O
class. At the end, it just checks, through the formula ?V :?D, if the value ?V is an
instance of ?D.

5.2 Ontology Schema

The ontology schema describes the subclass-class relationships and method signa-
tures. To specify the service classification presented in Section 3, the following
F-logic formulas are used:

networkControlService :: service
oamService :: service
userSubscriberService :: service
broadcastV ideoService :: userSubscriberService
highThroughputDataService :: userSubscriberService
lowLatencyDataService :: userSubscriberService
lowPriorityDataService :: userSubscriberService

An Ontology for Network Services 553

multimediaConferencingService :: userSubscriberService
multimediaStreamingService :: userSubscriberService
realT imeInteractiveService :: userSubscriberService
signalingService :: userSubscriberService
standardService :: userSubscriberService
telephonyService :: userSubscriberService

SLS sections are specified as attributes of class service. The following formula
consists of the service class attributes signature:

service[
classification{1 : 1} ⇒ classifier,
scope{1 : 1} ⇒ serviceScope,
conditioning{0 : 1} ⇒ policer,
expectedQoS{0 : 1} ⇒ metrics,

The service class has a set of attributes with different cardinalities: classification
and scope are mandatory. All other attributes are optional. Attribute classification
relates services with instances of classifier class. The classifier class has the following
set of attribute signatures:

classifier[
dscp{0 : ∗} ⇒ integer,
flowlabel{0 : ∗} ⇒ integer,
saddrs{0 : ∗} ⇒ string,
daddrs{0 : ∗} ⇒ string,
sport{0 : ∗} ⇒ integer,
dport{0 : ∗} ⇒ integer,
protocolid{0 : ∗} ⇒ integer,
action{1 : 1} ⇒ policy].

Attributes dscp, flowlabel, saddr, daddr, sport, dport and protocolid stand for
DSCP, IPv6 Flow Label, source address, destination address, source port, destina-
tion port and protocol identification fields, respectively. All attributes are optional
except action, which is used to specify which policy class instance will be used by
the classifier. The policy class has the following schema:

marker :: policy
shaper :: policy
dropper :: policy
shaper[buffersize{1 : 1} ⇒ integer, rate{1 : 1} ⇒ integer]
marker[class{1 : 1} ⇒ cos]
cos[dscp{1 : 1} ⇒ integer]

The classes marker, shaper and dropper are subclasses of class policy. Each has
its own attributes as different policies have different parameters. Class shaper has
two mandatory attributes: buffersize and rate, while marker has the attribute class
which takes an instance of class cos (Class of Service) as a value. Class cos only
contains the mandatory attribute dscp.

554 P. Aĺıpio, J. Neves, P. Carvalho

The serviceScope class has only the mandatory attributes ingressNodes and
egressNodes. Both take one or a set of edgeNode instances as a value. The fol-
lowing formulae are involved in a service scope specification:

serviceScope[ingress{1 : ∗} ⇒ edgeNode, egress{1 : ∗} ⇒ edgeNode]

edgeNode : node
coreNode :: node
coreNode[core if{1 : ∗} ⇒ link]
edgeNode[external if{1 : ∗} ⇒ link, core if{1 : ∗} ⇒ link]

The main difference between an edgeNode and a coreNode class is that core nodes
only have interfaces with core links, while edge nodes also have interfaces with links
located outside of the ISP domain. Links are specified by the class link, which is
defined in terms of the following formulae:

link[

queues{1 : ∗} ⇒ queue,
classifiers{1 : ∗} ⇒ classifier,
policers{1 : ∗} ⇒ policer,
bandwidth{1 : 1} ⇒ integer,
delay{1 : 1} ⇒ float]

The link class has three multiple values attributes: queues, classifiers and policers,
which relate link instances with instances of queue, classifier and policer classes,
respectively. Attributes bandwidth and delay specify link maximum bandwidth and
the link physical delay, respectively. All of them are mandatory.

The queue class has two subclasses: priorityq and rateq. The are given in terms
of the following statements:

rateq :: queue.
priorityq : queue.
rateq[weight{1 : 1} ⇒ integer].
queue[

maxqueuesize{1 : 1} ⇒ integer,
aqm{0 : 1} ⇒ aqmq,
class{1 : 1} ⇒ cos].

aqmq[
infl{1 : 1} ⇒ integer,
supl{1 : 1} ⇒ integer,
prob{1 : 1} ⇒ integer].

Instances of class priorityq inherit the mandatory attributes maxqueuesize and class,
while instances of class rateq must additionally specify a value for the attribute
weight. Queues may have AQM and as result the optional attribute aqm had to be
specified, linking queue and aqmq instances. Class aqmq, besides those inherited,
has three mandatory attributes, namely attribute infl, which stands for the inferior
limit over which packets have a probability of being removed from the the queue,

An Ontology for Network Services 555

given by attribute prob. Attribute supl stands for the superior limit, which means
that all packets over this value will be removed from the queue.

Two types of policers are considered in one model: single-rate/burst-size and
a two rate three color marker, specified by classes srbs and tr3cm, respectively.
These classes are subclasses of class policer. The following formulae illustrate the
policer specification:

srbs :: policer
tr3cm :: policer
policer[action{1 : 1} ⇒ policy]
srbs[rate{1 : 1} ⇒ integer, bs{1 : 1} ⇒ integer]
tr3cm[

greenclass{1 : 1} ⇒ cos,
yellowclass{1 : 1} ⇒ cos,
redclass{1 : 1} ⇒ cos,
rate1 ∗ {1 : 1} ⇒ integer,
rate2 ∗ {1 : 1} ⇒ integer,
bs ∗ {1 : 1} ⇒ integer]

Class policer has a mandatory attribute action which is inherited by both subclasses.
This attribute links instances of policer and policy classes. On the one hand, class
srbs has two mandatory attributes rate and bs, standing for the rate and burst size,
respectively. In the other hand, class tr3cm has the attributes greenclass, yellowclass,
redclass, which are used to map a CoS to the packet color; two rates given by rate1
and rate2, standing for the rates for green and yellow packets, respectively; and bs
which stands for burst size.

Expected QoS is specified by four attributes of class metrics. The following
formulae specifies the expected service QoS.

metrics[
thoughput{0 : 1} ⇒ integer,
loss{0 : 1} ⇒ qualitativeValues,
delay{0 : 1} ⇒ qualitativeValues,
jitter{0 : 1} ⇒ qualitativeValues]

Attributes throughput, loss, delay and jitter are optional and stand for the minimum
required bandwidth, packet loss ratio, inter-packet delay, and inter-packet delay
variation, respectively. All except throughput take instances of qualitativeValues
class.

Service scheduling is specified through the class serviceScheduling as it is illus-
trated by the following formulae:

serviceScheduling[start{0 : 1} ⇒ range, end{0 : 1} ⇒ range]

range[
time{1 : ∗} ⇒ timeOfTheDay],
weekday{1 : ∗} ⇒ daysOfTheWeek],

556 P. Aĺıpio, J. Neves, P. Carvalho

month{1 : ∗} ⇒ integer],
year{1 : ∗} ⇒ integer]

serviceScheduling class includes two optional attributes: start and end, which take
instances of class range as values. Class ranges includes the optional attributes
time, which take one or several time values; weekday, which may take several days
of the week values; month which take a month of the year as a value and year which
takes an integer standing for the year.

Finally, reliability is given by the formula: serviceReliability[mdt{0 : 1} ⇒
timeV alue, mttr{0 : 1} ⇒ timeV alue], where the optional attributes mdt and mttr
stand for maximum down time and maximum time to repair, respectively.

5.3 Default Values

Default values are considered to map service specifications into network configura-
tions, following the diffserv configuration guidelines[17], which includes information
about traffic classification, traffic conditioning and queue configuration. Service
classification and conditioning follows the following template:

S [
conditioning → # : P [PA1 → PV1, PA2 → PV2, . . . , PAn → PVn],
classification → # : classifier[

action− > # : Py[PyA1 → PyV1, P yA2 → PyV2, . . . , P yAn → PyVn]
],
expectedQoS → # : metrics[loss → L, delay → D, jitter → J]

].

where the symbol # stands for and anonymous object Id. In this template S, P ,
Py must be replaced by subclasses service, policer and policy. PA1,PA2, PAn

and PV1, PV2, PVn must be replaced by attributes and values (instances of class
policer), respectively. PyA1, PyA2, PyAn and PyV1, PyV2, PyVn must be replaced
by attributes and values (i.e., instances of policy class), respectively. L, D and J
should be replaced by loss, delay, and jitter qualitative values.

Queue configuration may now be given in terms of the following instances:

qdf : rateq[aqm → #, class → df].
qcs0 : rateq[aqm → #, class → cs0].
qcs1 : rateq[aqm → #, class → cs1].
qcs2 : rateq[aqm → #, class → cs2].
qcs3 : rateq[class → cs3].
qcs4 : rateq[class → cs4].
qcs5 : rateq[class → cs5].
qcs6 : rateq[aqm → #, class → cs6].
qcs7 : rateq[class → cs7].
qaf11 : rateq[aqm → #, class → af11].
qaf12 : rateq[aqm → #, class → af12].

An Ontology for Network Services 557

qaf13 : rateq[aqm → #, class → af13].
qaf21 : rateq[aqm → #, class → af21].
qaf22 : rateq[aqm → #, class → af22].
qaf23 : rateq[aqm → #, class → af23].
qaf31 : rateq[aqm → #, class → af31].
qaf32 : rateq[aqm → #, class → af32].
qaf33 : rateq[aqm → #, class → af33].
qaf41 : rateq[aqm → #, class → af41].
qaf42 : rateq[aqm → #, class → af42].
qaf43 : rateq[aqm → #, class → af43].
qef : priorityq[class → ef].

These class queue instances are a common configuration for Diffserv domains, where
each queue is mapped into a different CoS. All queues are rate queues except qef ,
which is a priority queue. All the AF class queues use AQM, while the others do not.

5.4 Rules and Inferred Knowledge

Some of the model classes do not need to be specified explicitly as they may be in-
ferred. Application services categories classes include several service classes. There-
fore, this knowledge may be materialized in terms of the following rules:

(1) ∀O O : applicationControlCategory ← O : signalingService

(2) ∀O O : mediaOrientedCategory ←
O : telephonyService ∨
O : realT imeInteractiveService ∨
O : multimediaConferencingService ∨
O : multimediaStreamingService ∨
O : broadcastV ideoService.

(3) ∀O O : dataCategory ←
O : lowLatencyDataService ∨
O : highThroughputDataService ∨
O : lowPriorityDataService

(4) ∀O O : bestEffortCategory ← O : standardService

where ∀ stands for “for all”. Rule (1) states that object O is an instance of the
applicationControlCategory class, whenever it is a instance of class signaling-
Service. Rule (2) states that object O is an instance of mediaOrientedCategory
class, if it is an instance of any of the classes O : telephonyService, O : real-
T imeInteractiveService, O : multimediaConferencingService, O : multimedia-
StreamingService, or O : broadcastV ideoService.. Rule (3) denotes that ob-
ject O is an instance of dataCategory class, if it is an instance of any of the
classes O : lowLatencyDataService, O : highThroughputDataService, or O :

558 P. Aĺıpio, J. Neves, P. Carvalho

lowPriorityDataService. Finally, rule (4) states that object O is an instance of
the bestEffortCategory class, whenever it is a instance of class standardService.

Attributes may also be inferred by a deduction process, e.g., the model shows
that there may be several classifiers and policers associated with the node links.
However, this information is not inserted directly into the node link classes. It is
rather specified in the service scope through the ingress node information and by
the classification and conditioning attributes. The following rules are used to report
the attributes classifiers and policers of a link.

∀L,C,S,Sc,I L : link[classifiers → C] ←
L : link ∧
S[classification → C] ∧
S[scope → Sc] ∧
Sc[ingress → I] ∧
I[core if → L]

∀L,P ,S,Sc,IL : link[policers → P] ←
L : link ∧
S[conditioning → P]
S[scope → Sc] ∧
Sc[ingress → I] ∧
I[core if → L]

where the attribute classifiers returns the classifiers associated with a link class
by: (i) checking if the instance L is in fact a link instance; (ii) variable C takes
the values of attribute classification of every instance of service; (iii) Sc takes the
value of service scope attribute; (iv) I takes the value of scope ingress attribute;
(v) only considers the service classifiers which uses ingress nodes (I) with core
interfaces(core if) connected to the link class instance. The other rule uses the
same strategy over conditioning.

5.5 Queries

A F-logic allows high level queries to explore the ontology knowledge. In a network
service context, queries may be addressed to the knowledge base, in order to know
which configurations must be performed at each node of the network. As a result,
this information may be used, together with a network management framework, to
configure real network domains. Queries may also get information about the state
of services, service scheduling, and other information useful for service management.
Let us consider the following example.

∀N,L,C,P ,Q nodeconf(N, {C, P , Q}) ←
N : edgeNode[core if → L] ∧
L[classifiers → C] ∧
L[conditioners → P] ∧
L[queues → Q]

An Ontology for Network Services 559

∀N,L,C,P ,Q nodeconf(N, Q) ←
N : coreNode[core if → L] ∧
L[queues → Q]

Such a rule returns a set of values, as a result of the unification process of the
variables C,P and Q with the classifier, policer, queue instances. As class node has
the subclasses coreNode and edgeNode, two rules where defined. The first rule gets
all links to core nodes and all the classifiers, policers and queues associated with the
link instances by its attributes. The second rule only returns the core nodes queues.
A query may therefore be posted in terms of the statement nodeconf(ingress1, ?C).
As a result, it will return classifier, conditioning and queue configurations for the
node instance ingress1. However, if the query nodeconf(?N, ?C) is made, it will
return all the domain node configurations.

6 CONCLUSION AND FUTURE WORK

This work intends to go much further than a service specification task. Service spe-
cifications usually include several sections, which describe the service requirements
with different technical perspectives: traffic classification, traffic conditioning, scope,
expected QoS, scheduling and service reliability. However, they never include net-
work configuration and related information. In those approaches, mapping services
into network configurations cannot be done conceptually because XML is often used
and it imposes a hierarchical structure, which is not adequate to specify those com-
plex relations between services and network devices.

By modeling network services in terms of an ontology, those limitations are
overcome. Moreover, several classes and relations may not be explicitly defined, as
they may be deducted through inference rules. Through high level queries and rules
it is possible to retrieve any information kept in the knowledge base.

F-logic allows class attributes values specifications, which are inherited by in-
stances and may be viewed as default values. Most of the ontology specification
languages do not consider this feature. However, it is particularly important to
create default configurations for service categories.

Work is currently in progress to create a service specification beyond its technical
aspects, involving the administrative and management perspectives.

Acknowledgments

A PHD grant provided by Fundação para a Ciência e Tecnologia is gratefully ac-
knowledged (SFRH/BD/17579/2004).

REFERENCES

[1] Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. Guarino, N. and Poli, R. (eds.), Formal Ontology in Conceptual Analysis and

560 P. Aĺıpio, J. Neves, P. Carvalho

Knowledge Representation, Deventer, The Netherlands, Kluwer Academic Publishers,
1993.

[2] Kifer, M.—Lausen, G.—Wu, J.: Logical Foundations of Object-oriented and
Frame-based Languages. Journal of ACM, No. 42, 1995, pp. 741–843.

[3] Morand, P., et al.: Mescal D1.3 – Final Specification of Protocols and Algorithms
for Inter-domain SLS Management and Traffic Engineering for QoS-based IP Service
Delivery and their Test Requirements. Mescal Project IST-2001-37961, 2005.

[4] Diaconescu, A.—Antonio, S.—Esposito, M.—Romano, S.—Potts, M.: Ca-
denus D2.3 – Resource Management in SLA Networks. Cadenus Project IST-1999-
11017, 2003.

[5] Goderis, D.—T’Joens, Y.—Jacquenet, C.—Memenious, G.—Pavlou, G.—
Egan, R.—Griffin, D.—Georgatsos, P.—Georgiadis, L.—Heuven, P. V.:
Service Level Specification Semantics, Parameters, and Negotiation Requirements.
Internet-Draft, drafttequila-sls-03.txt (work in progress).

[6] Alipio, P.—Lima, S.—Carvalho, P.: XML Service Level Specification and Vali-
dation. 10th IEEE Symposium on Computers and Communications (ISCC ’05), 2005,
pp. 975–980.

[7] Brickley, D.—Guha, R.: Resource Description Framework (RDF) Schema Spec-
ification. http://www.w3.org/TR/rdf-schema, W3C, 1999.

[8] Hendler, J.—McGuinness, D.: Darpa Agent Markup Language. IEEE Intelligent
Systems, Vol. 15, 2000.

[9] Bechhofer, S.—van Harmelen, F.—Hendler, J.—Horrocks, I.—
McGuinness, D.L., Patel-Schneider—P. F.,—Stein, L.A.: OWL Web On-
tology Language Reference. W3C, 2004.

[10] Ankolekar, A. et al.: Daml-S: Semantic Markup for Web Services. Proceedings of
the International Semantic Web Workshop, 2001.

[11] Martin, D. et al.: OWL-S 1.1 Release. http://www.daml.org/services/owl-s/
1.1/, 2004.

[12] Grosof, B.N.—Kifer, M.—Martin, D. L.: Rules in the Semantic Web Services
Language (SWSL): An Overview for Standardization Directions. Rule Languages for
Interoperability, 2005.

[13] Lausen, H.—de Bruijn, J.—Polleres, A.—Fensel, D.: WSML – A Language
Framework for Semantic Web Services. Rule Languages for Interoperability, 2005.

[14] Connolly, D.—van Harmelen, F.—Horrocks, I.—McGuinness, D. L.—
Patel-Schneider, P. F.—Stein, L.A.: DAML+OIL Reference Description. W3C,
2001.

[15] de Bruijn, J.—Kifer, M.: F-logic/XML – An XML Syntax for F-logic. WSMO
Working Draft. http://www.wsmo.org/2004/d16/d16.2/v0.1/20040324, 2004.

[16] Haller, A.—Cimpian, E.—Mocan, A.—Oren, E.—Bussler, C.: WSMX –
A Semantic Service-Oriented Architecture. ICWS, 2005, pp. 321–328.

[17] Babiarz, J.—Chan, K.—Baker, F.: Configuration Guidelines for Diffserv Service
Classes. RFC 4594, 2006.

[18] Heinanen, J.—Guerin, R.: A Two Rate Three Color Marker. RFC 2698, 1999.

An Ontology for Network Services 561

[19] Kifer, M.— Lausen, G.: F-Logic: A Higher-Order Language for Reasoning About
Objects, Inheritance, and Scheme. SIGMOD ’89: Proceedings of the 1989 ACM SIG-
MOD International Conference on Management of Data, New York, NY, USA, 1989,
pp. 134–146.

Pedro is a project engineer at Critical Software and
he is also a Ph. D. student at the Department of Informatics,
University of Minho, Portugal, where he was a lecturer during
the past three years. Previously, he worked as lecturer at Supe-
rior Institute of Engineering of Porto and Superior Institute of
Industrial Studies and Management. He holds a Master degree
in computer communications, distributed systems and computer
architecture from University of Minho.

José is full professor of computer science at the Depart-
ment of Informatics, the University of Minho, Braga, Portugal,
since 1999. He received a Ph.D. in computer science from He-
riott Watt University, Edinburgh, Scotland, in 1984. His current
research directions span the fields of extended logic program-
ming, knowledge representation and reasoning systems, intelli-
gent systems, cognitive robotics and the applications of artificial
intelligence to medicine and to the law. He has published more
than a hundred papers in international journals, conferences,
workshops and symposiums.

Paulo is currently assistant professor of computer
communications at the Department of Informatics, University
of Minho, Braga, Portugal. He graduated in 1991 in informatics
and systems engineering at the University Minho and received
his Ph. D. degree in computer science from the University of Kent
at Canterbury, United Kingdom, in 1997. His main research
interests include broadband technologies, multiservice networks
and protocols, network management and mobile networks.

