
Providing cost-effective QoS monitoring in
multiservice networks

Paulo Carvalho, Solange Rito Lima, André Ferreira, Emanuel Freitas, Filipe Leitão
University of Minho, Department of Informatics

4710–057 Braga, Portugal

Abstract—In multiservice networks, QoS monitoring needs
to be carried out in a per-class basis so that each service
class measuring requirements and behavior are met and sensed
properly. Facing the shortage of off-the-shelf class-based moni-
toring solutions, this work is focused on the development ofa
flexibly QoS monitoring tool oriented to multiservice networks.
In this context, after discussing main QoS monitoring issues, we
propose a flexible QoS monitoring Java application, totallyuser
parameterized and supporting service differentiation. Benefiting
from an edge-to-edge design perspective, this service-oriented tool
is able to make a periodic evaluation of relevant QoS metrics
for each service class, on an intra-domain or end-to-end path
basis. Monitoring results, stored in a MySQL database, are useful
to drive both online and offline traffic engineering and service
management tasks.

I. I NTRODUCTION

Emergent applications and services are putting high de-
mands to network infrastructures, growing side-by-side with
the network available bandwidth. With the deployment of
multiservice networks and subjacent services, monitoringthe
Quality of Service (QoS) delivered to user applications as-
sumes a crucial role as it allows a more rational management
of network resources, and an efficient service control and
auditing. Therefore, a systematic monitoring of service classes
is needed to detect eventual changes of network behaviour,
which may endanger the fulfilment of negotiated Service Level
Agreements (SLAs). The monitoring process should provide
measures reflecting the real status of services’ quality, without
introducing significant overhead or interfering with operational
network traffic. Active monitoring carried out on an edge-to-
edge basis, i.e. between the network boundaries in which a
service level needs to be enforced, is particularly suitable for
QoS control and SLS auditing.

Providing measurement analysis has been a hot topic for
network researchers for a long time and, in the last years,
concrete development has been achieved toward active mea-
surement solutions. Within IETF, IP Performance Metrics
working group has standardized methods for Delay [1] and
Loss [2] measurements, which converge in the relatively recent
One-Way Active Measurement Protocol (OWAMP) [3]. RIPE
NCC project [4] is a good example of how to provide active
measurements for ISPs, although NCC approach does not
support differentiation based on service classes. Other network
monitoring solutions mostly evaluate the network status and
analyze its behaviour from a service monolithic perspective.
These solutions are limitative within multiservice networks

context, where the main concerns regarding monitoring are
related to a scalable evaluation of differentiated QoS delivery.

In this work, we propose – QMon – a scalable and class-
based QoS monitoring tool, which can be deployed within a
single domain or over multiple network domains. The tool
can be fully parameterized, which means that a user can
easily configure the application to monitor services’ behaviour,
and use it for assessing each service class QoS status and
performance. Being a Java multiplatform implementation, it
is totally independent from specific monitoring and measure-
ment hardware and network infrastructure. This also fosters
portability, while being a cost-effective solution.

To sustain QMon design principles and architecture, this
paper starts with a study of relevant characteristics of moni-
toring systems, focusing the debate on the problem of QoS
monitoring on multiservice networks. From the vast range
of projects and tools covering multiple network monitoring
aspects [5], few are able to provide an encompassing view
of QoS on a per class basis (see debate in Section II). This
reasoning and analysis grounds the motivation for developing
a new service-oriented QoS monitoring tool for performance
evaluation of next generation networks.

This paper is organized as follows: related work is dis-
cussed in Section II; QMon design goals and architecture are
presented in Section III; QMon components are specified in
Section IV; the implementation details and current stage of
QMon prototype testing are provided in Section V; and the
conclusions are presented in Section VI.

II. QOS MONITORING ISSUES AND RELATED WORK

A monitoring system can follow either a centralized or
distributed architecture. Centralized approaches facilitate an
integrated and consistent view of the network performance,
but scalability problems may occur in infrastructures involving
large number of monitoring nodes and significant volume of
monitoring data. In distributed monitoring systems, data is
collected and processed at each measurement point (MP) or,
more commonly, at the receiver side of each pair of MPs,
following a sender-receiver or peer-to-peer model. These latter
approaches are particularly suitable for on-line QoS measure-
ment purposes on an edge-to-edge or path basis. Nevertheless,
a central data repository is recommended to facilitate a post-
processing QoS analysis, for instance, to support SLS auditing
and medium/long-term traffic engineering decisions.

The classic process to obtain QoS measures resorts to
passive and/or active measurement methodologies. Active
measurements resort to intrusive traffic, or probes, specifi-
cally injected in the network for measurement purposes. This
methodology provides a straightforward way for assessing
QoS objectives, as specific packets are injected in the network
containing data to help metrics’ estimation. However, probing
needs to be tightly controlled so that it does not disturb or
interfere with the normal network operation. This concern
is further stressed when it is carried out per service class.
Although active monitoring has been matter of considerable
research, extending its study to a multiclass network paradigm
is crucial and further study is needed [6]. As a reference
contribution, also to QMon design, the OWAMP standard [3]
allows measuring one-way latency and loss related metrics
between hosts, based on measurements of synthetic traffic,
including support for traffic class differentiation.

Passive measurements use existing network traffic for metric
computation. Although passive techniques are usually usedto
monitor the performance of single nodes, e.g. troubleshoot-
ing or accounting, they can also be applied to edge-to-edge
measurements, for instance, combining hop-by-hop metrics
along the network path. This allows reducing the amount
of synthetic traffic, at expense of increasing processing and
synchronization needs. An alternative edge-to-edge approach
still within the scope of passive measurements relies on the
analysis of information of real application flows (e.g., using
TCP ACK or RTCP data). This approach is also referred
as passive probing [7]. To take advantage of the positive
aspects of both methodologies, many authors propose the
use of integrated solutions, where passive and active mea-
surements are combined to achieve more scalable monitoring
systems [8] [9] [10].

Regarding time granularity, monitoring can be carried out
off-line or on-line, i.e., based on a post-processing or real-time
data analysis. Off-line monitoring is more oriented to guide
long-term decisions and provide a broad view of the network
operation, accounting and diagnostic. On-line monitoringis
specially oriented to provide feedback to short or medium term
network management and traffic control mechanisms, i.e., the
monitoring outcome is required to drive reactive mechanisms
so that traffic control decisions are not decoupled from the
current network status. Currently, SLS auditing, formerlytaken
as an off-line task, assumes a crescent relevance as an on-line
task [4], as customers are increasingly demanding in assessing
the provided service levels on a near real-time basis. Figure 1
illustrates these concepts.

The RIPE NCC project, as an operational network-
monitoring platform, has been a strong reference for the
present work, taking in consideration its successes and lim-
itations. In our opinion, positive aspects include the use of
a dedicated measurement infrastructure, active measurements
with adjustable probing, and the support for inter-provider
network measurements. A current limitation is that the network
is viewed as a single class environment, without service
differentiation. NetQoS, a commercial QoS monitoring so-

Data RepositoryMonitoring
Offline Processing

Network Monitor

Hop−by−Hop Mon. Hop−by−Hop Mon.

Online

Passive Active

Online Online

Passive Passive PassiveActive Active

Node Monitor
Offline

Node Monitor
Offline

Node Monitor
Offline

Data PathData Path

Edge−by−Edge Mon.

RouterRouterIngress EgressCore Router

Fig. 1. Generic QoS monitoring architecture

lution, having technical vendor support, is easy to deploy
and maintain in production scenarios. However, it has the
limitations of a closed and proprietary architecture, concerning
the range of applicability scenarios and monitoring parameters.

The main objective of QMon, as a flexible, open-source
software monitoring tool, is to provide systematic QoS moni-
toring in multiservice networks. This is an essential task to: (i)
keep track of ongoing QoS and network performance levels;
(ii) verify Service Level Specification (SLS) compliance; (iii)
provide feedback to traffic control mechanisms and trigger
network recovery procedures; and generically (iv) supporttraf-
fic engineering tasks. These aspects, along with the shortage
of available service-oriented QoS monitoring tools, stress the
relevance and real applicability of the proposed solution.

III. QM ON TOOL

A. Design goals and architecture

The main objective of this project is to develop a versatile
monitoring tool able to perform QoS measurements in a per
class basis, following the IETF IPPM Working Group [11]
guidelines. The proposed monitoring architecture (see Figure
2) is grounded on the following design goals:

• one-way measurements– providing one-way measure-
ments allows to solve the misleading impact that asym-
metric routing may have on QoS measurements. In ad-
dition, it allows to identify, for instance, the direction in
which a eventual problem is experienced;

• active measurements– active measurements between
network boundaries, in which service levels need to
be enforced, are particularly suitable for QoS control
and SLS auditing. A generic traffic generation tool is
included in the monitoring architecture to control the
characteristics of probing traffic injected into each service
class;

• fully configurable– our solution offers a wide range
of configurable options in order to adjust it to different
measurement scenarios. This versatility includes the con-
figuration of per service probing, the definition of relevant
metrics for each service class, and the identification of
involved MPs;

Fig. 2. QMon Architecture

• infrastructure independent- in an end-to-end scenario, it
is usual to have packets traversing different domains, fol-
lowing distinct administrative and configuration policies.
Therefore, the interaction with network infrastructure and
its particularities has to be minimal ;

• flexible location of MPs– MPs are here considered at
network edges, however, they can be place at any network
location;

• scalable– the performance of a monitoring solution needs
to be, as much as possible, independent of the size of
the network being measured. The edge-to-edge nature
of the proposed monitoring solution allows improving
scalability.

QMon encompasses two main elements: the QBoxes and
the QServer. QBoxes are MPs strategically distributed in the
network, typically at its boundaries, and their main task is
to exchange probing traffic to compute the QoS metrics of
each service class. The QServer gathers all measurements
and QBoxes’ configurations into a central database. Collected
data remains available for subsequent analysis and supportof

management and traffic engineering actions over distinct time
scales. These two elements are software-based, more specif-
ically Java applications. QMon is, therefore, highly portable,
easy to deploy and cost-effective. As mentioned before, to
improve scalability the network is viewed as a black-box.
Apart from QMon components setup, the solution does not
impose special requirements from network nodes and does
not depend on network configuration particularities. This is a
clear advantage over hardware-based or proprietary monitoring
approaches [4].

B. QServer

Qserver is a central component of the architecture, where
the measurements from all QBoxes are stored. As measures
are being received, they are inserted into a database (MySQL
or Oracle), remaining available to be accessed by external
entities, which can perform independent data manipulation.
The status of all existing QBoxes and their configuration is
also maintained in QServer. This allows data to be changed
on-the-fly by sending them updating messages. Qserver is also

responsible for notifying the QBoxes when a new one becomes
active or inactive, or when new service measurement policies
need to be deployed. The communication primitives exchanged
between QServer and QBoxes will be described in the next
section.

Note that, despite the central nature of data gathering, in
the medium/short term, the measures remain available in the
QBoxes to support distributed traffic engineering, avoiding
the functional dependence and congestion of a single central
entity.

C. QBoxes

QBoxes are responsible for generating, sending and receiv-
ing probing traffic in order to evaluate the relevant metrics
for each service class. This means that the characteristics
of probing traffic and the metrics to evaluate are service-
dependent, according to a configuration previously received
from the QServer for each service class. Receiving probing
packets for metrics evaluation is a primary function of a QBox.
Once the multiple metrics are calculated, they are reportedto
QServer.

In practice, the configuration parameters for the QBoxes
may be derived from both negotiated SLAs and the internal
ISP policies for service configuration and control.

IV. QM ON COMPONENTS

A. QServer specification

1) Client-Server communication:Communication among
QBoxes and the QServer is made through the protocol illus-
trated in Figure 3.

Fig. 3. QBox/QServer Communication Protocol

A. The initialization of a QBox comprises the following
phases:

1. Initially, the new QBox sends its identification to
QServer, which registers the QBox and notifies
other QBoxes that a new box is in place (B). This
allows the QBox to be included in the measuring
process and to start receiving probing traffic. If a
QBox is already registered with the same identi-
fication a proper notification USED BOX is sent,
otherwise the QServer sends an OK message;

2. The QServer sends all the information that the
QBox needs before sending probing traffic. This
process is based on two distinct sequences of
messages: one informing the characteristics of the
defined service classes; the other providing each
QBox IP address and identification. After this, the
new QBox is ready to send and receive probing
traffic to and from all QBoxes , according to the
service classes characteristics;

3. At this stage, every time a sample of probing traffic
is fully received by a QBox, the metrics of the
corresponding service class are calculated and sent
to the QServer. This process is done repeatedly
while the QBox remains operational. The QServer
receives these messages and inserts their contents
into a database.

B. After a new QBox is registered, the QServer notifies all
other active QBoxes of its existence, using the already
open sessions. Thus, adding new QBoxes to the plat-
form dynamically does not interrupt the measurement
procedure;

C. When a QBox shuts down, the existing session between
this QBox and the QServer is closed. The QServer
notifies this occurrence to other QBoxes in order to stop
the measurement flow to the offline QBox;

D. Whenever a new service class is defined or updated
in the database, its new settings are also sent to all
the involved QBoxes. Thus, probing to new service
classes may start without interrupting the measurement
procedures for the remaining classes;

E. Similarly, whenever a service class is removed from the
database, the QServer notifies all the involved QBoxes
so that the obsolete class can be removed from their
local information structure. Once again, the measure-
ment procedure for the remaining service classes is not
disrupted.

2) Database:The routing process in IP networks is usu-
ally dynamic, meaning that, from an end-to-end perspective,
probing flows can be sent through different routes over time.
Performing route pinning on probes helps identifying reasons
for QoS variability. Thus, each set of QoS metrics is associated
with the route found in the period of time that the measurement
was carried out, i.e., the measuring time interval. For each
sample, the values of the calculated metrics are stored in a
MySQL database, according to the structure represented in
Figure 4.

Fig. 4. Database scheme

Table Flows identifies the origin and destination of end-to-
end flows between QBoxes, being assigned a unique identifier.
Table Routes identifies the routes and their number of hops,
each one associated to the existing flow identification. Table
Metrics identifies the values of each metric. These metrics
are differentiated per service class, and report to average
values of a probing sample in the corresponding measurement
time interval. Whenever a new set of metrics is added, the
existence of a measurement flow between two QBoxes is
verified, followed by the verification of the associated route,
being created if it is still not defined. This relationship is
obtained by forcing each record from Table Metrics to be
related with a route between two QBoxes.

B. QBox specification

Each QBox has three main structures (updated on-the-fly
by the QServer):

• QBox list – contains the identification and the address of
all active QBoxes;

• Class of Service configuration – contains the configura-
tion parameters of all classes, which are: protocol, port,
number of packets per sample, time between samples and
timeout of a sample;

• Samples - contains the timestamps of packets within a
sample and the paths from the sending QBoxes;

and three main processes:
• Sending Process – responsible for creating and sending

the samples;
• Receive Process – responsible for receiving the samples

from all QBoxes;
• Server Communication Process – responsible for the

communication with the QServer.
1) Sending process:An advantage of developing the send-

ing process is to obtain full control of low-level packet
building; this is achieved using the Jpcap library [12]. This
control allows generating distinct probing patterns (or probing
samples), adjusted to each service class being measured.

In more detail, there is one independent sending process
for each Service Class, modulated as an ON/OFF source
(see Figure 5). The sending process checks the service class
configuration for the probing source parameters, the numberof
packets within an ON period and type of protocol (TCP/UDP)
to use. During the ON period, the sending process builds
a burst of packets with the corresponding Service Class
identifier, sends it to every QBox within its scope. The inter-
packet time is either deterministic or probabilistic. Therefore,
in addition to Constant Bit Rate (CBR) sources, probing traffic
may also follow a Variable Bit Rate (VBR) pattern, with a
Poisson distribution regulating the inter-packet waitingtime.
During the OFF state, the sending process stands by for a
configurable time period (a time value between samples).
Probing variability is suggested to reduce the chance of traffic
synchronization, as periodic network perturbations resulting
from probing itself can drive the network into a synchro-
nization state, which may end up affecting the measurements,
leading to biased metrics.

Fig. 5. ON/OFF process scheme; Y is the number of active QBoxes; T is
the Poisson inter-packet time; n is the number of packets sent in a Service
Class sample.

The traffic generation process is independent of the des-
tination QBox, as no session is established. In this way, the
measurement overhead and latency are reduced. As mentioned
before, packet building is carried out resorting to the defined
settings for the respective Service Class. Having full control of
packet building opens the opportunity to use the probe packets
payload to convey useful information for the destination box:

<boxId>::<serviceClassId>::<timestamp>::<seqNumber>::<path>

More specifically,<boxId> is the identifier of the current
QBox generating the traffic;<serviceClassId> is the Service
Class identifier;<timestamp> is the current system time at
the origin QBox, which is going to be synchronized with
the destination box using NTP (Network Time Protocol);
<seqNumber> provides a sample identification function so
that the destination box knows exactly the number of packets
sent in this sample and, therefore, loss can be detected;
<path> indicates the path between the origin and destination
boxes1.

The sending process described above is fully configurable
and flexible. When a new service class is defined, the new QoS
parameters will be automatically interpreted and measuredin
all destination boxes within its scope.

2) Receive Process:For probing traffic reception and anal-
ysis, all QBoxes are listening for incoming probes. When a
new packet is received, a timestamp is added to it, and then it
is validated regarding its origin and payload syntax. Payload
data is verified in four stages: (i) the identification of the
sender box should match the sender address of the packet;
(ii) the identification of the service class is validated; (iii) the
sender timestamp is checked against the receiver timestamp;
and (iv) the sequence number should match the range of values
expected for its class. If a validation stage fails, the packet is
discarded.

After this validation and verification process, the informa-
tion of the packet is gathered into a structure that containsthe
box identification, the class identification, the path, and the

1The path is evaluated using a traceroute-based approach carried out at the
beginning of the ON state. The insertion of the path in all probing packets
allows to increase their length and, in this way, avoid compression by the
networks transferring them, which will affect the transmission time [4].

timestamps generated at sender and receiver. If the received
packet is the first of a new sample, the QBox ID, the service
class identification, the system time plus the timeout value
defined for the class are inserted into a timeout table. The
timeout table contains the time limit that a QBox should wait
for the missing packets from a sample. When all the packets
from a sample are received or when the timeout expires, the
QoS metrics are calculated.

In the QoS metrics evaluation, three metrics are considered
for each sample as illustrated in Table 1: mean delay, jitter
and packet loss ratio. The maximum delay is also determined.
Regarding jitter, Ri is the arrival timestamp and Si is the sender
timestamp of packet i. When jitter cannot be evaluated (e.g.
lack of packets), the error value “-1” is reported to the QServer.
After evaluating the QoS metrics, the corresponding valuesare
sent to QServer in a METRICS message, using the following
syntax:

METRICS:<boxId>::<sendBoxId>::<path>::<timestamp>::<class>::
<maxDelay>::<meanDelay>::<jitter>::<packetLossRatio>

The <boxId> is the identification of the current QBox;
<sendBoxId> is the QBox which sent the sample;<path>
identifies the path between<sendBoxId> and <boxId>;
<timestamp> indicates the mean timestamp of the sample,
i.e., the mean between the timestamp of the first and of the last
packet within the sample;<class> is the identification of the
Service Class;<maxDelay> is the maximum delay found in
the sample;<meanDelay>, <jitter> and<packetLossRatio>
are the calculated QoS metrics.

3) QServer Communication Process:When a QBox re-
ceives a notification from the QServer that other QBox has
become active, the identification of the new box is inserted in
the list of active QBoxes. A new record to save its samples is
also created and inserted in the metrics’ structure. If a QBox
becomes inactive, the corresponding records are deleted from
the list of active QBoxes and from the metrics’ structure.
When the QServer informs about a new service class, the
QBox inserts those values in the Service Class configuration
structure and starts the Sending Process for that class. If the
QServer notifies that a service class is due to be removed, the
QBox stops the Sending Process for that class and removes
the corresponding record from the structure.

V. QMON IMPLEMENTATION ASPECTS

As mentioned before, the main programming language used
in the development of QMon was Java; and Jpcap library [12]
for low-level network control.

TABLE I
STANDARD ONE-WAY QOS METRICS

MeanDelay =
PNumOfP kts

i=1
(ArriveTstampi−SendTstampi)

NumOfPkts

Jitter = Jitter +
|D(i−1,i)|−Jitter

16
D(i, j) = (Rj − Ri) − (Sj − Si)

PacketLossRatio = ExpectedPackets−ReceivedPackets
ExpectedPackets

This section will focus on the implementation details of the
architecture main components: the QServer and QBox.

A. QServer

1) QServer/QBox Communication:Upon a connection re-
quests from QBoxes, the QServer records each IP address
and QBox ID, and a thread indicator related to each ongoing
QBox/QServer TCP session. In this way, the QServer is able to
notify active QBoxes if any state change occurs. This is carried
out through the invocation of methods implemented in the
communication thread that each QBox has with the QServer.
When QBoxes or service classes are added or removed, these
methods are invoked, for addressed QBoxes.

Each QBox sends to the QServer messages with the mea-
surement values obtained for each sample, so they can be
insert into the database. To interact with the database a generic
API has been developed, which allows performing queries and
statements to MySQL or Oracle 10g databases. An extension
to this API allowing the QServer to insert, remove and query
our database has also been created.

2) Front-end: To access the measurement results, a web
front-end has been developed, allowing an easy access to
this information, with a distributed profile. The front-end
consists of a php page rendering different graphs, which
illustrates, for all service classes, the QoS metrics behaviour
between QBoxes over distinct, configurable time scales. The
process of obtaining the metrics’ values is carried out querying
the database, and filtering the entries for the required time
length, origin, destination and metric. The identificationof
the QBoxes presented in the existing front-end roll boxes
is dynamic. So when a reference to a QBox is inserted or
removed from the database, the information in the front-end
is automatically updated.

B. QBox

QBox has a simple role in the whole architecture, with a
plug-and-play profile. For this reason, the QBox application
has a straightforward text-based interface that guides theuser
through the initial configurations. Initially, all active network
interfaces that can be used by the application are shown and
detailed:
==============================
= QMon - QBox v1.0 =
==============================

Log - SendBox - Interface: 1
Type: Ethernet
MAC Address: 0:1d:ba:19:60:ee:
Network Address: /fe80:0:0:0:d938:f9aa:8a8d:35ef null

/0.0.0.0 /255.0.0.0

Log - SendBox - Interface: 2
Type: Ethernet
MAC Address: 0:16:ea:26:3d:e:
Network Address: /fe80:0:0:0:cc9:f70e:d6a4:67da null

/192.168.1.6 /255.255.255.0

Next, the user is questioned for essential information to
proceed with the application initialization:
QBox Identification: Aveiro
QServer Address: 192.168.1.4
Interface: 2

The QBox Identificationis the key for distinguishing the
QBox in the database. TheQServer Addresshas to be the
one used to establish the session between the QBox and the
QServer. Finally, theInterface, chosen by the user from the
available network interfaces, is the one used to send and
receive probes. After the initial configuration, the QBox enters
two distinct procedures: packet building and sending; and
packet reception and analysis. These procedures, responsible
for the behaviour described in Sections IV-B1 and IV-B2, are
briefly presented below.

1) Packet building and sending procedure:When the QBox
application is initiated, a main thread is going to be actively
waiting for QServer communications. When a NEWCLASS
message is received from the QServer, the current thread
processes it, launching a new one, which works with the
received parameters. This is where the sending process starts
for a Service Class. The new launched thread is going to
be active while the Service Class is registered on the local
database. When a REMOVECLASS message is received
from the QServer, the class entry is removed and the thread is
dropped. This sending process follows the ON-OFF behavior
explained previously.

The sendSamplemethod creates samples according to the
Service Class configuration parameters, and forwards them
packet-by-packet to each active QBox registered. Prior to
sending a sample, it traces the route for each destination QBox,
using ICMP packets. This allows discovering the traversed
path beforehand so that it can be inserted in the packet payload
for additional information. This information is useful, for
instance, to determine the number of hops and to detect route
changes, which may justify significant variations in the QoS
measures.

After building the payload, the probing packet is marked
according to the classtype-of-serviceand sent. Once all
packets within a sample are sent, the process is restarted and
kept active while the Service Class is registered or the user
does not stop it. To allow a plug-and-play profile, the default
router for the current network is automatically detected.

2) Packet reception and analysis procedure:The packet re-
ception and analysis procedure is implemented in two threads.
The first one is responsible for capturing the packets and
analyse them. For a correctly received packet, the timestamps
(send and arrive) are saved in an ArrayList, according to
their sequence number. There are multiple ArrayLists to save
the timestamps of all Service Classes from active QBoxes.
Those ArrayLists are saved into a HashMap, having as key
the sender QBox identification and the Service Class to which
those timestamps belong. The maximum size of each ArrayList
is the number of expected packets from each Service Class.
When an ArrayList reaches its full capacity, the sample is
complete and the QoS metrics are calculated and sent to the
QServer.

The second thread is responsible for verifying the timeout
table, searching for expired time values. When the first packet
of one sample is received, the current time of the system and
the timeout value defined for the corresponding Service Class,

are inserted into a HashMap, where the key is the QBox and
Service Class identifier. Along the time, this thread compares
the system time with the timeout values in the table; if a
timeout values is exceeded, the QoS metrics for that sample
are calculated and sent to the QServer.

C. Time synchronization

The accuracy of measurements depends on appropriate time
synchronization methods. Inaccuracies on time reference of
communicating QBoxes results in unreliable measures be-
tween them. Initially, and for testing the QMon application
prototype, NTP is used to synchronize all QBoxes and the
QServer. A dedicated NTP server, which synchronizes from
three public NTPs servers, is used to provide the same time
reference to QMon components, reducing inaccuracies that
could result from using distinct synchronization sources.As
future work, this synchronization method shall be improved.

D. QMon prototype testing

At this stage, testing QMon prototype has involved assuring
the correctness and robustness of the developed software com-
ponents. Based on a prototype network environment compris-
ing service classes with distinct QoS requirements, QMon was
tested in two stages. Firstly, the sending process was verified
resorting to Wireshark tool, which confirmed the correct time
and space characteristics of probing traffic. This was cross-
checked with log analysis in each QBox. Secondly, to test the
receiving process, synthetic packets with specific timestamps
were generated to force distinct delay and jitter for each
Service Class. Comparing the QoS measures obtained with
QMon with the expected measures considering the packets’
timestamp, the correctness of the measurement process was
verified.

To visualize the QoS measurements, a web interface updated
in real-time was created (report to Figure 2). Each graph
represents the temporal series of a specific metric between
two QBoxes, calculated resorting to the metrics stored in
the database. Graphs measurements in short, medium and
long time scales can be rendered, depending on the user
configuration.

E. Steps ahead

At the present stage, the Java QMon prototype is fully
operational, stable and tested in a local testbed. A short-term
aim is to extend this testing to PlanetLab in order to assess and
validate the tool over a large-scale network environment. We
also intend to further develop or improve several aspects of
the proposed QoS monitoring solution, namely: (i) to provide
authentication support for users and QBoxes; (ii) to tune
and enhance the probing process; (iii) to consider additional
monitoring methodologies, such as passive capture of available
data within the network nodes along the path, in order to
enhance QoS evaluation of existing service classes; and (iv) to
reduce the database size and the volume of traffic exchanged
between the QServer and the QBoxes (strategies for aggregate
measurements and for low-overhead metrics’ dissemination

are under study). Currently, the configuration parameters are
user defined and are the same for all QBoxes. We are planning
to derive these service parameters from the negotiated SLSs,
sending them only to the QBoxes within the scope of the
service contracted in the SLSs.

VI. CONCLUSIONS

In this paper, QMon - a flexible QoS monitoring tool for
multiservice networks - has been proposed and implemented.
This tool is able to measure the QoS of distinct service classes
between network measurement points (QBoxes). QBoxes may
be dynamically added to or removed from the infrastructure
without disrupting monitoring. The measurement results can
be accessed directly from the monitoring database or from a
web interface available on the QServer. QMon, as a multiplat-
form and generic tool, is a versatile and cost-effective QoS
monitoring solution to be deployed in multiservice network
environments, being useful to assist traffic engineering tasks,
service management and auditing.

REFERENCES

[1] Almes, G., Kalidindi, S., Zekauskas, M.: A One-way DelayMetric for
IPPM (RFC 2679) (1999)

[2] Almes, G., Kalidind, S., Zekauskas, M.: A One-way PacketLoss Metric
for IPPM (RFC 2680) (1999)

[3] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., Zekauskas, M.: A
One-way Active Measurement Protocol (OWAMP) (RFC 4656) (2006)

[4] Georgatos, F., Gruber, F., Karrenberg, D., Santcroos, M., Susanj, A.,
Uijterwaal, H., Wilhelm, R.: Providing Active Measurements as a
Regular Service for ISP’s. Proceedings of the Passive and Active
Measurements Workshop PAM2001, Amsterdam (2001)

[5] http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html.
[6] Whitner, R., Pollock, G., Cook, C.: On Active Measurements in QoS-

Enabled IP Networks. PAM’02, Fort Collins CO (2002)
[7] Corral, J., Texier, G., Toutain, L.: End-to-end Active Measurement

Architecture in IP Networks (SATURNE). PAM’03 (2003)
[8] Asgari, H., Trimintzios, P., Irons, M., Egan, R., Pavlou, G.: Building

Quality-of-Service Monitoring Systems for Traffic Engineering and
Service Management. Journal of Network and Systems Management
11(4) (2003) 399..426

[9] J.C. et al: SCAMPI: A Scalable and Programmable Architecture for
Monitoring Gigabit Networks. 6th IFIP/IEEE MMNS’03 (2003)

[10] Lima, S.R., Sousa, P., Carvalho, P.: Enhancing QoS Metrics Estimation
in Multiclass Networks. 22nd Annual ACM Symposium on Applied
Computing (ACM SAC’07), Track on Computer Networks, Seoul,Korea
(2007)

[11] Internet Engineering Task Force, IP Performance Measurements Work-
ing Group (IETF IPPM-WG)) http://www.ietf.org/html.charters/ippm-
charter.html.

[12] http://netresearch.ics.uci.edu/kfujii/jpcap/doc/.

