
A Semantic Model for Enhancing Network Services
Management and Auditing

Carlos Rodrigues1, Paulo Carvalho1,3, Luis M. Álvarez-Sabucedo2, and Solange Rito
Lima1

1 University of Minho, Department of Informatics, 4710-057 Braga, Portugal
2 University of Vigo, Dept. of Telematics, Vigo, Spain

3 e-mail: pmc@di.uminho.pt

Abstract. The road toward ubiquity, heterogeneity and virtualization of network ser-
vices and resources urges for a formal and systematic approach to network manage-
ment tasks. In particular, the semantic characterization and modeling of services pro-
vided to users assume an essential role in fostering autonomic service management,
service negotiation and auditing.
This paper is centered on the definition of an ontology for multiservice IP networks
which intends to address multiple service management goals, namely: (i) to foster
client and service provider interoperability; (ii) to manage network service contracts,
facilitating the dynamic negotiation between clients and ISPs; (iii) to access and query
SLA/SLSs data on an individual or aggregated basis to assist service provisioning in
the network; and (iv) to sustain service monitoring and auditing. In order to take full
advantage of the proposed semantic model, a service model API is provided to allow
service management platforms to access the ontological contents. This ontological
development also takes advantage of SWRL to discover new knowledge, enriching
the possibilities of systems described using this support.

Key words: Ontology; Network Service Management; SLA/SLS; Semantics; Multiser-
vice IP Networks

1 Introduction

The evolution of the Internet as a convergent communication infrastructure supporting a
wide variety of applications and services poses new challenges and needs to network man-
agement, which has to be more focused on managing services instead of network equip-
ment. This approach requires the capability of viewing the network as a large distributed
system, offering an encompassing set of services to users.

Commonly, the type of service, its Quality of Service (QoS) requirements and other
technical and administrative issues are settled between customers and Internet Service
Providers (ISPs) through the establishment of Service Level Agreements (SLA). The tech-
nological component of this agreement is defined through Service Level Specifications
(SLS). SLSs provide a valuable guidance to service deployment of network infrastructures
and monitoring of contracts’ compliance. Attending to the ever growing number of home
and business customers, contracted services and network heterogeneity, the implementa-
tion and management of network services are very demanding tasks for ISPs. Besides the
inherent complexity, this process may lead to inefficient policy implementation and poor
resource management.

In fact, under the current variety of available services, e.g. IP telephony, 3-play or 4-
play solutions, the interaction between service providers and end customers is rigid and
rather limitative regarding service negotiation and auditing tasks. For instance, from a user
point-of-view, the possibility of a short-term upgrade on access bandwidth to the Inter-
net or a tight quality control of the subscribed service would be of undeniable relevance.



From a service provider perspective, providing this sort of facilities, would clearly improve
the level of service being offered, increasing competitiveness and resource management
efficiency. These aspects are impelling ISPs to pursue autonomic solutions for service ne-
gotiation, configuration and management.

Although several proposals exist in the literature toward achieving dynamic service ne-
gotiation and management [1–4], the lack of a strong formal ground in addressing these
tasks is evident and overcoming it is essential [5]. A formal specification of network ser-
vices management semantics is required as the building blocks to create reasoning mecha-
nisms to allow developing self-managed ISPs. By using a knowledge-based formal frame-
work and an inference engine capable of reasoning over concepts, relations and changes of
state, it is possible to create a more flexible and robust ground for specifying and imple-
menting autonomic and adaptive management tasks.

As a contribution in this context, this work proposes an ontology specification in the
domain of multiservice networks, which formally specifies the contractual and technical
contents of SLAs, the network service management processes and their orchestration, pro-
moting service autonomic management and configuration. This model provides support for
a Service Management Platform that facilitates client and service provider interoperability,
and service contracts management, including service data querying by the provider and, at
some levels, by the client. This is enabled through a developed ServiceModel API, which
allows the applicational use of the proposed ontology. The multiservice network semantic
model is developed in Web Ontology Language (OWL), assisted by the Protégé-OWL tool.
The use of Semantic Web technologies enhances service management modeling expansive-
ness and reusability.

This paper is structured as follows: research work on ontologies related to service defi-
nition and QoS is debated in Section 2; the developed model and its main modules are pre-
sented in Section 3; the way semantics is applied based on the developed API is discussed
in Section 4; examples of practical use of the proposed model are provided in Section 5;
the conclusions and future work are included in Section 6.

2 Related work

Several research studies focusing on ontologies for network services support and QoS are
found within the research community. While part of the ontologies focuses on Web Services
(WS) QoS requirements, other concentrate on SLA/SLSs support.

QoSOnt [6] is an OWL ontology that centers on comparative QoS metrics and require-
ments definition. Although this ontology supplies the correct semantics for matchmaking,
this was never demonstrated due to datatype limitations in OWL. To overcome this lim-
itation, a pure XML based solution was used, losing all of the virtues of OWL [7]. The
DAML-QoS [8] is a QoS metrics ontology for WS developed in DAML+O. The ontol-
ogy is divided in three layers: QoSProfile Layer, QoS Property Definition Layer and QoS
Metrics Layer. In [9] a new Service Level Objective (SLO) concept, metrics’ monitoring
and statistical calculation semantics are presented. MOQ [10] is another proposal of a QoS
semantics model for WS, but it is not exactly an ontology. It only specifies axioms and
does not present a taxonomy structure or a dictionary of concepts. MonONTO [11] ontol-
ogy aims at creating a knowledge base to support a client recommendation system. The
ontology serves as a support to a decision recommendation tool by providing high-level
information to the user about the compliance of the network facing the service level de-
mands. In [12], an ontology aiming at the automation of network services management and
mapping of services requirements into the network is proposed. The ontology is viewed in
three perspectives: (i) the network service classification; (ii) the service level specification;
and (iii) the deployment of network services. A group of generic ontologies to provide a
framework for building SLAs is presented in [13]. In this context, the Unit Ontology con-
tains all the comparable elements of an SLA, with the intention of supporting the creation



of any type of measurable unit. It also allows the definition of unit supported comparators
and the creation of comparison operations. The other examples of available ontologies are:
the Temporal Ontology for temporal occurrences such as events and intervals; The Network
Units Ontology for units related to telecommunications networks; and the SLA Ontology
for basic SLA specification. Therefore, rather than a QoS ontology, a set of reusable on-
tologies is proposed for providing support for other QoS semantic model implementations.
The OWL-based ontology NetQoSOnt [14] intends to be the support of a reasoning tool for
service requirements matchmaking. It promotes the definition of SLSs containing quality
parameters belonging to the following levels: the Quality of Experience, the Quality in the
Application Level, the Quality in the Network Level and the Quality in the Link Level.

In the proposals discussed above, the lack of an unified and encompassing approach for
semantic modeling of services and corresponding contracts in a multiservice environment
is clear. In fact, most of the proposals are more focused on specification of network services
metrics than on integrated service management. In the present work, a holistic model for
modeling multiservice networks is provided paying special attention to the characteriza-
tion and auditing of services quality. This ontology focuses on service contracts to assist
network services’ implementation by specifying how the defined contract elements are de-
ployed in the network infrastructure, a feature not considered in the reviewed works. Al-
though the proposed model is still evolving, its modular structure and the usage of Semantic
Web technologies leaves room to model expansion and integration with other proposals.

3 Multiservice Network Ontology
The proposed model is divided in two main modules: the service management module
and the network module. As illustrated in Figure 1, these modules are organized as a lay-
ered structure where the upper layer has a dependency relation with the lower layer. This
structure mimics real scenarios where the management component is, indeed, above the
physical network. This formal representation of a network is expressed in formal terms
using the support of OWL, following the principles from Methontology [15].

The network module, as stated above, acts as the base layer. It includes concepts of
network node, network interface and network equipment configuration elements related to
the implementation of contracted services in the network. The management module covers
the domain network service management related to service contracts, including service
monitoring rules. This module uses several elements of the network module. Services are
categorized by relating them to a type of SLS [16, 17]. According to recommendations from
[18], ITU Y.1541 and 3GPP standards, current service types include: real-time services,
multimedia services, data services, and default traffic service.

Another important component of the proposed service model regards to multiservice
monitoring (see Figure 1). This implies the definition of the main monitoring issues to
include in the multiservice ontology to assist auditing of Internet services both from an ISP
and customer perspective. To service providers, it will also allow a tight control of services,
network resources and related configuration procedures.

On top of the Multiservice Ontology, a complete ServiceModel API offers to a Ser-
vice Management Platform the access to the ontological contents. Without detailing the
construction of the ontology at this point, it is relevant to highlight the identification of
competence questions. These are the first and the last step in this methodology and fulfill
the need to establish the requirements and the outcomes of the ontology itself, i.e., which
questions the ontology will be able to answer. In the present case, the definition of an
ontology for multiservice IP networks intends to address multiple service-oriented goals.
Possible competence questions include:

(i) from a customer perspective: Which type of service packs are available for sub-
scription? Which service parameters are customizable? Which is the available bandwidth
at a specific access point, for a particular service? Is the contracted service being delivery
within the negotiated QoS?



Fig. 1. Service model diagram

(ii) from an ISP perspective: At an aggregate level, which is the allocated bandwidth
for a particular service type? Which are the negotiated parameters per SLS? Which are
the configuration parameters on each interface of an edge network node and the available
bandwidth per interface? Which services are supported between specific ingress and egress
interfaces? Are the QoE/QoS requirements of a particular service being accomplished? On
which network points are occurring QoS violations?

In the description of modules provided in the sections below, a top-down approach will
be followed to allow a broad view of the multiservice ontology.

3.1 Management Module

The management module is where service contracts or SLAs are defined and managed.
The first concept is the Client which identifies the customer part of the contract and stores
all client information. A client is related to at least one SLA which represents a service
contract. An SLA can have more than one SLS. The SLS structure, illustrated in Figure 2,
follows the recommendations in [16, 17], and is briefly described below.

– SLS Identification: This field identifies the SLS for management purposes, being used
by both provider and customer. It is composed of a unique SLS id parameter and a
Service id parameter, allowing to identify multiple SLSs within the same service.

– Scope: The scope specifies the domain boundaries over which the service will be
provided and managed, and where policies specified in a service contract are ap-
plied. Normally, SLSs are associated with unidirectional flows between at least one
network entry point and at least one exit point. To cover bidirectionality, more than
one SLS is associated with a service. The entry points and the exit points are ex-
pressed through ingress and egress interfaces, respectively (see Section 3.2). At least
two Interfaces (ingress and egress) instances must be specified. The interface



id : string
name : string
email : string
country : string
streetAddress : string
telephone : int

Client

metricValue : float
unit : string
unitConversion : float
baseUnit : string

Metric

id : string
SLA

id : string
SLS startDate

ServiceSchedule

includesSLA

0..*

includedSLABy

1

includesSLS0..*

in
cl
ud
ed
S
LS
B
y

1 includesScope 1..*
1

in
cl
ud
es
P
er
fo
rm
an
ce
G
ua
ra
nt
ee
s

1

1

isMonitoredBy

0..*

monitorizesSLS

1

includesServiceSchedule1

1

id : string
Network Module::TrafficClassifier

id : string
Network Module::TrafficConditioner

id : string
name : string
includesTotalBandwidthCapacity : float
includesReservedIngressBandwidthCapacity : float
includesReservedEgressBandwidthCapacity : float
includesLayer2Address : string
includesLayer3Address : string
isActive : bool

Network Module::Interface

includesClassifier

1..2

1

includesConditioner

*

*

isInConformity : bool
MonitorSLS

serviceName : string
Service

definesSLS 0..*
1

name : string
ServicePack

includesService

1..**

includesPerformanceGuarantees11

Fig. 2. SLS class diagram

identification must be unique and is not restricted to the IP address (the identification
can be defined at other protocol layer).

– Traffic Classifier: The Traffic Classifier specifies how the negotiated service
flows are identified for differentiated service treatment. Following Diffserv terminol-
ogy, multifield (MF) classification and behavior aggregate (BA) classification are sup-
ported (see Section 3.2). Usually, BA classification takes place over previously marked
traffic, e.g. in network core nodes or, in the case of SLSs, between ISPs. Two traffic
classifiers can be specified, an ingress traffic classifier and optionally an egress one.
The ingress/egress classifier is then applied to each ingress/egress interface within the
scope of the SLS.

– Traffic Conditioner: This field specifies the policies and mechanisms applied to traf-
fic flows in order to guarantee traffic conformance with the traffic profiles previously
specified. Traffic conditioning occurs after traffic classification, so there is always a
relation between the traffic classifier and the traffic conditioner specified within a SLS.

An unlimited number of TrafficConditioner instances can be specified. As in
the traffic classifier property, the conditioners are divided into ingress and egress de-
pending on their role. The ingress/egress conditioner is articulated with the ingress/egress
classifier on each interface defined in the SLS scope as an ingress/egress QoS policy.
This property is not mandatory.

– Performance Guarantees: The Performance Guarantee fields specify the guarantees of
service quality and performance provided by the ISP. Four quality metrics are con-
sidered: delay, jitter, bandwidth and packet loss, expressed through instances of the
Bandwidth, Delay, Jitter and PacketLoss Metric subclasses. The defini-
tion of at least one instance of these Metric subclasses is mandatory, except on the
Default Service type of SLS. Whenever there is a performance guarantee specification,
a traffic conditioning action must also be specified. Delay and jitter are usually spec-
ified by their maximum allowed value or by a pair consisting of a maximum upper
bound and a quantile. Packet loss (edge-to-edge) is represented by the ratio between
the packet loss detected at the egress node and the number of packets sent at ingress
node. Instead of quantitative, quality and performance parameters can also be specified
in a qualitative manner.



– Reliability: The Reliability is usually specified by the mean downtime (MDT) and
by the maximum allowed time to repair (TTR). The no compliance of the negotiated
parameters may result in a penalty for the ISP.

– Service Schedule: The Service Schedule defines the time period of service availabil-
ity associated with an SLS. While a start date is always specified, an end date is
only specified in case of a reservation, ReservedServiceSchedule, in which
the client requests the service during a specific period of time. In the default case,
StandardServiceSchedule, only the service start date is specified, i.e., the con-
tract must be explicitly terminated by the client.

– Monitoring: Monitoring refers to SLS’ performance parameters monitoring and report-
ing. For that purpose, a measurement period, a reporting date and a threshold notifica-
tion are specified. Other parameters such as the maximum outage time, total number
of outage occurrences, reporting rules and reporting destination may be specified.

– Type of Service: The type of service is described by the Service class. This class al-
lows the definition of services offered by the ISP to customers from a business-oriented
perspective. Offered services are described through a set of qualitative metrics. The
mapping from a qualitative service description to a quantitative service specification
is assured by the ISP. The Service class allows to relate the SLS with a specific
instance of service offering. It also helps establishing SLS templates on an applica-
tion level. Services can be offered as a package (e.g. triple or quadruple play services)
through the ServicePack class.

3.2 Network Module

At present, an ISP is represented as a cloud network, where only edge (ingress and egress)
nodes are visible. The abstract representation of domain internal nodes and inherent internal
service configuration mechanisms are left for future work. Therefore, instead of represent-
ing configuration elements at per-hop level, the model is focused on a per-domain level. In
this module (see Figure 3) there are three key elements:

id : string
name : string
includesTotalBandwidthCapacity : float
includesReservedIngressBandwidthCapacity : float
includesReservedEgressBandwidthCapacity : float
includesLayer2Address : string
includesLayer3Address : string
isActive : bool

Interface

id : string
name : string

Node

id : string
Policy

id : string
TrafficClassifier

id : string
TrafficConditioner

includesInterface0..*
includedInterfaceBy1

includesIngressPolicies

0..*

1
includesEgressPolicies

0..*

1

Network

includesNode

0..*1

includesC
lassifier 0..*

1

includesC
onditioner 0..*

*

Fig. 3. Interface class diagram

– Node: The Node class represents a network node (on the current model, corresponds
to a domain border node). It is related to a set of Interface class instances.

– Interface: The Interface class represents ingress and egress points of the ISP do-
main. Specifically it allows the mapping of external network interfaces or entry/exit
points of ISP border nodes. The interface supports a two-way traffic flow. It is possible
to attach layer 2 and layer 3 addresses to the interface concept in order to relate it to



a real network interface in the ISP domain. Each interface has a total bandwidth ca-
pacity and a reserved bandwidth capacity specified dynamically for ingress traffic and
egress traffic. For QoS purposes, it is possible to specify a set of QoS policies. In this
case, a QoS policy is a relation between a traffic classifier instance and a set of traffic
conditioner instances applied to traffic classified by the former. A QoS policy can be
an ingress policy or an egress policy.
The Interface class, as illustrated in Figure 3, is defined by an identifier, link and
network layer addresses and total bandwidth capacity both downstream and upstream.
It includes two counters for ingress and egress reserved bandwidth of all contracted
services applied to this interface. Each instance can be related to a set of QoS policies
applied on incoming and outgoing traffic. A boolean value is also defined for interface
state indication.

– Traffic Classifier: The TrafficClassifier class has two subclasses: MF and BA.
The BA class instances, applied to previously marked traffic, only have one field, a
relation with a Mark class instance. The Mark class contemplates all forms of aggre-
gated traffic marking (such as DSCP, IPv6 FlowLabel, MPLS Exp, etc.). The MF class
allows the definition of traffic classification rules with multiple fields. There are no con-
straints on the number of allowed fields and these are divided into: link, network and
transport header fields. This means that several types of fields can be used: IPv4 and
IPv6 addresses, IPv6 Flow Label, ATM VPI/VCI and MPLS Labels. The fields used
in the classification rule are combined through a logic operator represented through
the LogicOperator class instances AND and OR. For a more complex classifying
rule definition, other TrafficClassifier class instances can be stated as fields,
working as nested classification rules.

– Traffic Conditioner: The traffic conditioner is designed to measure traffic flows against
a predetermined traffic profile and, depending on the type of conditioner, take a prede-
fined action based on that measurement. Traffic conditioning is important to ensure that
traffic flows enter the ISP network in conformance with the established service profile.
It is also an important policy for handling packets according to their conformity level
facing a certain traffic profile with the purpose of differentiating them in the network.
According to their features, there are three TrafficConditioner subclasses: the
Marker, Policer and Shaper classes. The policer usually takes an immediate
action on packets according to their compliance against predefined traffic profile. A
Policer class instance must have a set of traffic measurement parameters and at least
two levels of actions defined. Three different policers are defined in the current model.
The TokenBucketPolicer represents a single rate policer with two level actions
(for in profile and out of profile traffic). The SingleRateThreeColorMarker
and TwoRateThreeColorMarker are examples of policers with three levels of
conformance actions. The Shaper is the only conditioner subclass where no immedi-
ate action is taken on traffic flows. Instead, all packets are buffered until traffic profile
compliance is verified. The Marker class is a special type of conditioner which per-
forms traffic marking and may be combined with other traffic conditioner elements.

3.3 Multiservice Monitoring Module

As illustrated in Figure 1, the aim of the monitoring system to develop is twofold:
(i) to monitor and control SLSs parameters in order to ensure that measured values are

in conformance with the negotiated service quality levels. This auditing purpose involves
a prior characterization of each service requirements, monitoring parameters and corre-
sponding metrics, and the definition of appropriate measurement methodologies and tools
to report multilevel QoS and performance metrics to users and system administrators;

(ii) to measure and control the usage of network resources. This includes the identifica-
tion of network configuration aspects impacting on services performance, namely schedul-
ing and queuing strategies on network nodes. In fact, monitoring network resources and



triggering traffic control mechanisms accordingly will allow to maintain consistent quality
levels for the supported services and the fulfillment of the negotiated SLSs.

Another main concern of this task is to congregate users and ISPs perspectives regard-
ing the description and control of services quality. This means that the perceived service
quality for users (Quality of Experience - QoE), commonly expressed through subjective
parameters, has to be identified and mapped into objective and quantifiable QoS parameters,
able to be effectively controlled by network service providers. Therefore, the articulation of
QoE and QoS, and the identification of appropriate measurement methodologies for evalu-
ating and controlling service quality levels in both perspectives (users and ISPs) is a main
concern to cover in the present module.

In this context, multiservice monitoring is expected to provide a clear identification
and layering of all monitoring issues to include in the multiservice ontology to assist au-
diting and control of negotiated service levels through the proposed Service Management
Platform.

3.4 The VoIP Service as Example

As mentioned before, a service provider may describe each provided service through a set
of qualitative metric values, which are then mapped to quantitative values to assist, for
instance, configuration and service control. For example, a VoIP type of service can be
described as:

VoIP Service
Bandwidth: Low_Bandwidth = at least 1 Mbps
Delay: VeryLow_Delay = at most 100 ms
Jitter: VeryLow_Jitter = at most 50 ms
Packet Loss: VeryLow_Loss = at most 0.001 % of lost packets

This type of service description is used for SLS classification in accordance with the
specified metrics. In other way, SLSs can be built based on the type of service description
when required. An example of an SLS instance for the VoIP service is shown in Figure 4.

id : string = SLS1
SLS1 : SLS

id : string = N1I1
name : string = eth0
includesTotalBandwidthCapacity : float = 1000000
includesReservedIngressBandwidthCapacity : float = 1024
includesReservedEgressBandwidthCapacity : float = 0
includesLayer2Address : string = 00:00:00:00:00:01
includesLayer3Address : string = 10.0.0.1
isActive : bool = true

N1I1 : Network Module::Interface
id : string = N2I1
name : string = eth0
includesTotalBandwidthCapacity : float = 1000000
includesReservedIngressBandwidthCapacity : float = 0
includesReservedEgressBandwidthCapacity : float = 1024
includesLayer2Address : string = 00:00:00:00:00:02
includesLayer3Address : string = 10.1.0.1
isActive : bool = true

N2I1 : Network Module::Interface

id : string = Cl1
includesLayer2AddressSpec : string
includesLayer3AddressSpec : string = 10.0.0.51
includesLayer4AddressSpec : string = 12345
includesProtocolID : string

Cl1 : Network Module::MF

id : string = Tk1
includesSR : float = 1024
includesBS : float = 1500

Tk1 : Network Module::TokenBucketPolicer

metricValue : float = 1024
unit : string = bps
unitConversion : float = 1
baseUnit : string = bps

Bd1 : Bandwidth
metricValue : float = 100
unit : string = ms
unitConversion : float = 1
baseUnit : string = ms

Dl1 : Delay
metricValue : float = 50
unit : string = ms
unitConversion : float = 1
baseUnit : string = ms

Jt1 : Jitter
metricValue : float = 0.001
unit : string = %
unitConversion : float = 1
baseUnit : string = %

PL1 : Loss

metricValue : float = 99
unit : string = %
unitConversion : float = 1
baseUnit : string = %

Rl1 : Reliability

startDate = 01/01/10
Schd1 : StandardServiceSchedule

includesIngressInterface includesEgressInterface
includesIngressClassifier

includesIngressConditioner
includesPerformanceGuarantees

includesServiceSchedule

includesReliability

Tk1A1 : Network Module::MARK DROP : Network Module::DROP

includesInProfileAction includesOutProfileAction

EF : Network Module::DSCP

includesResultingMark

id : string = SLS1P
SLS1P : Network Module::Policy

includesClassifier
includesConditioner

includesIngressPolicy

Fig. 4. SLS example diagram for VoIP service

When the SLS instance is set, the TrafficClassifer and TrafficConditioner
specified lead to QoS policy instances. A relation is then established between each QoS



policy and network interfaces instances specified in the scope of the SLS (Figure 4). This
policy information is useful for automating the deployment of QoS mechanisms in the ISP
network infrastructure.

By establishing relations among all these entities, a change in one of them affects all
other related entities. For example, a change in an SLS parameter is spread through all the
corresponding SLS configurations in the network infrastructure.

4 Applying semantics

This section discusses how the presented model is converted into an ontological support.
Thus, the characterization of the multiservice domain can be used in further software so-
lutions ranging from web contents to complex software agents responsible for decision
making. This ontology was developed according to the basis proposed by Methontology
[15]. In this way, it is guaranteed its conformance with a set of methodological rules and
the final product can be traced to its origin and reused in a simple and cost-effective manner.

The proposed ontology provides the main concepts and properties required to describe
multiple services levels and corresponding quality in a network domain. For its imple-
mentation, according to the terminology proposed in Methontology, it was used Protégé to
generate the OWL representation. This representation uses not only classes and properties,
but it also includes restrictions on the values of the previous ones. Therefore, it is ensured
the conformance of current contents and future pieces of information to the established
parameters of the system.

Besides per-class restrictions, a set of general rules are defined for establishing new
rule-based relations between individuals. These rules are expressed using SWRL and they
are applied to check information in order to discover new possible instances and properties
within the system. So far, there are defined rules for (i) validation of interfaces capacity
included in a contract scope; (ii) compliance verification of monitored metrics in relation
to service contract specifications; (iii) changing interfaces network status; (iv) qualitative
classification of performance metrics; and (v) classification of SLSs according to the type
of service. For example, the following rule states that if all SLS performance metrics have
qualitative values matching a definition of a type of service then the SLS specifies a service
of that type.

SLS(?sls) ∧ Service(?service)
∧ includesBandwidth(?sls, ?bandwidth)
∧ includesBandwidthQualV alue(?service, ?qualiBandwidth)
∧ includesDelay(?sls, ?delay)
∧ includesDelayQualV alue(?service, ?qualiDelay)
∧ includesJitter(?sls, ?jitter)
∧ includesJitterQualV alue(?service, ?qualiJitter)
∧ includesLossQualV alue(?service, ?qualiLoss)
∧ includesPacketLoss(?sls, ?loss)
∧ includesQualitativeV alue(?bandwidth, ?qualiBandwidth)
∧ includesQualitativeV alue(?delay, ?qualiDelay)
∧ includesQualitativeV alue(?jitter, ?qualiJitter)
∧ includesQualitativeV alue(?loss, ?qualiLoss)
→ definesSLS(?service, ?sls)

Additional rules are defined for the above mentioned issues. Nevertheless, for other
purposes, it is suggested to define rules at application level due to the complexity and lim-
itations of SWRL [19] at using knowledge from different sources and involving advanced
logical checks.



On the top of the provided ontology, it is developed a complete software API. This
API, referred as the ServiceModel API, is implemented following the diagram presented in
Figure 5.

PelletJena Framework

JenaBeans

TDB

ServiceModel API

Fig. 5. ServiceModel API structure diagram

The Jena Framework [20] plays a major role in the developed software. It provides
support for working with RDF and OWL based archives. The handling of OWL entities
(classes, individuals and restrictions) is provided by the Jena Ontology API. Recall that the
ontological content can be accessed from the local computer or from a remote server. The
Pellet [21] engine is the reasoner used due to its SWRL [22] support.

Working on top of the Jena framework, the Jena beans API binds RDF resources (in
this case, OWL classes) to Java beans simplifying the process of Java-to-RDF conversion.
This feature enables users to work with individuals as Java objects.

The persistence of the knowledge is guaranteed by the TDB [23] technology, which is
clearly simpler and more efficient than the SDB solution (uses SQL databases for storing
RDF datasets). However, the API integration of an SDB solution is not totally abandoned.

The ServiceModel APl intents to assist future projects in several goals: (i) to fos-
ter client and service provider interoperability; (ii) to manage network service contracts,
facilitating the dynamic negotiation between clients and ISPs; (iii) to access and query
SLA/SLSs data on a individual or aggregated basis to assist service provisioning in the
network; and (iv) to assist service monitoring and auditing. Therefore, this API, aimed to
sustain further developments, supports in a straightforward manner for software develop-
ers the following features: (i) the insertion and removal of information on the Knowledge
Base (creating/destroying individuals); (ii) the validation of the Knowledge Base informa-
tion (classification and realization); (iii) establishment of more complex rules based rela-
tions (not possible through SWRL); (iv) Knowledge Base querying, implemented through
SPARQL [24] and the ARQL Jena API; and (v) Knowledge Base persistence.

5 Practical Application

Once the semantic model for fully describing SLAs/SLSs is set, services can be provided
on top of it. Semantics is not, in general, an end by itself. On the contrary, its use is moti-
vated by achieving further goals. In the case of this proposal, it is generated a framework
to boost interoperability and advanced data mining features. Bearing that in mind, services
were derived as proof-of-concept. Firstly, it is suggested a RDFa support to introduce an-
notations on xhtml descriptions about SLAs and SLSs. Afterwards, it is suggested the use
of a semantic engine to recover information from a repository of information regarding the
formers.

RDFa [25] is a semantic technology that empowers users to include semantic anno-
tations on XML (or xhtml) contents. These annotations are invisible for human user but
easily recovered for software agents using GRDDL [26]. It is important to keep in mind
that both technologies are official recommendations from W3C.



Taking as a basis the provided OWL model for describing the system, annotations can
be included in xhtml describing SLAs and SLSs. For the sake of clarity, it is included the
following example:

<p xmlns:sla="http://owl.det.uvigo.es/sls/">
The provided connection under the interface
<span property="sls:id">Service1</span>,
provides a total BW of
<span property="sls:includesTotalBandwithCapacity">
20 MBps</span>.

</p>

As shown in this xhtml snippet, a network interface and some of its properties are
described. This definition of capacities of the Network Module can be directly recovered
using GRDDL. The use case expected for this functionality is related to the web pages of
ISPs. Service providers, when offering their services, can include this information into their
web pages. Users will be able to recover this information through software agents on their
behalf, and include it into a data repository for further decisions.

Once these pieces of information are included in a Semantic Database, regardless of its
origin, either from GRDDL extraction or from other sources, it is possible to get added-
value services. Using SPARQL Queries [24], for example, it is possible to locate SLAs/SLSs
fulfilling specific properties the user is interested in. The only requirement is to identify the
graph matching the desired properties and implement the corresponding SPARQL query.
Authors successfully tested this feature by means of the API provided. It is actually rather
simple to deploy a software tool that looks for, for instance, the cheapest SLA in the market
or the one offering the fastest network access, among other features.

6 Conclusions and Future Work

This paper has presented an innovative approach to the development of a semantic model
in the domain of multiservice networks. This model formally specifies concepts related to
service and SLS definition, network service management, configuration and auditing, cre-
ating the reasoning mechanisms to ground the development self-managed ISPs. Although
being conceptually aligned with the differentiated service model, the solution is generic
without being tied to a specific QoS paradigm.

The usefulness of the present semantic service modeling has been pointed out for mul-
tiple applications in the context of multiservice management. In particular, aspects such as
dynamic service negotiation between service provides and end customers, and auditing of
Internet services being provided may be strongly improved as consequence of using the
proposed ontology.

Possibilities and features from this ontology are also presented to software developers
by means of a ServiceModel API. The functionality within this library can be used for
the above mentioned goals. Due to the modular schema for this software component, its
inclusion on future projects constitutes a simple task that will provide a useful support in
further developments.

References

1. D’Arienzo, M., Pescapè, A., Ventre, G.: Dynamic service management in heterogeneous net-
works. Journal of Network and System Management 12(2) (2004)

2. Sarangan, V., Chen, J.: Comparative study of protocols for dynamic service negotiation in next
generation internet. IEEE Communications Magazine 44(3) (2006) 151–156

3. Cheng, Y., Leon-Garcia, A., Foster, I.: Toward an autonomic service management framework:
A holistic vision of SOA, AON, and autonomic computing. IEEE Communications Magazine
46(5) (May 2008) 138–146



4. Zaheer, F.E., Xiao, J., Boutaba, R.: Multi-provider service negotiation and contracting in network
virtualization. In: IEEE NOMS’10. (2010) 471–478

5. Atkinson, E., Floyd, E.: IAB concerns and recommendations regarding internet research and
evolution. RFC 3869, Internet Engineering Task Force (August 2004)

6. Dobson, G., Lock, R., Sommerville, I.: Qosont: a qos ontology for service-centric systems. In:
EUROMICRO ’05: Proceedings of the 31st EUROMICRO Conference on Software Engineering
and Advanced Applications, Washington, DC, USA, IEEE Computer Society (2005) 80–87

7. Dobson, G., Sanchez-Macian, A.: Towards unified qos/sla ontologies. In: SCW ’06: Proceedings
of the IEEE Services Computing Workshops, Washington, DC, USA, IEEE Computer Society
(2006) 169–174

8. Zhou, C., Chia, L.T., Lee, B.S.: Daml-qos ontology for web services. In: IEEE International
Conference on Web Services, Los Alamitos, CA, USA, IEEE Computer Society (2004)

9. Zhou, C., Chia, L.T., Lee, B.S.: Qos measurement issues with daml-qos ontology. In: IEEE
International Conference on E-Business Engineering, Los Alamitos, CA, USA, IEEE Computer
Society (2005) 395–403

10. Kim, H.M., Sengupta, A., Evermann, J.: Moq: Web services ontologies for qos and general
quality evaluations. Int. Journal of Metadata, Semantics and Ontologies 2(3) (2007) 195–200

11. Moraes, P., Sampaio, L., Monteiro, J., Portnoi, M.: Mononto: A domain ontology for network
monitoring and recommendation for advanced internet applications users. In: Network Opera-
tions and Management Symposium Workshops, IEEE NOMS 2008. (April 2008) 116–123

12. Alípio, P., Neves, J., Carvalho, P.: An ontology for network services. In: International Conference
on Computational Science (3). (2006) 240–243

13. Green, L.: Service level agreements: an ontological approach. In: ICEC ’06: Proceedings of
the 8th international conference on Electronic commerce, New York, NY, USA, ACM (2006)
185–194

14. Prudencio, A.C., Willrich, R., Diaz, M., Tazi, S.: Quality of service specifications: A semantic
approach. IEEE International Symposium on Network Computing and Applications (2009) 219–
226

15. Fernández-López, M., Gómez-Pérez, A, Juristo, N.: Methontology: From ontological art towards
ontological engineering. Symposium on Ontological Art Towards Ontological Engineering of
AAAI. (1997) 33–40

16. Morand, P., Boucadair, M., P. Levis, R.E., Asgari, H., Griffin, D., Griem, J., Spencer, J., Trim-
intzios, P., Howarth, M., Wang, N., Flegkas, P., Ho, K., Georgoulas, S., Pavlou, G., Georgatsos,
P., Damilatis, T.: Mescal D1.3 - Final Specification of Protocols and Algorithms for Inter-domain
SLS Management and Traffic Engineering for QoS-based IP Service Delivery and their Test Re-
quirements . Mescal Project IST-2001-37961 (Jan 2005)

17. Diaconescu, A., Antonio, S., Esposito, M., Romano, S., Potts, M.: Cadenus D2.3 - Resource
Management in SLA Networks. Cadenus Project IST-1999-11017 (May 2003)

18. Babiarz, J., Chan, K., Baker, F.: Configuration Guidelines for DiffServ Service Classes. RFC
4594 (Informational) (August 2006)

19. Zwaal, H., Hutschemaekers, M., Verheijen, M.: Manipulating context information with swrl.
A-MUSE Deliverable D3.12 (2006)

20. McBride, B.: Jena: a semantic web toolkit. IEEE Internet Computing 6(6) (2002) 55–59
21. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner.

Journal of Web Semantics 5(2) (June 2007) 51–53
22. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A semantic

web rule language combining owl and ruleml. W3c member submission, W3C (2004)
23. Owens, A., Seaborne, A., Gibbins, N., mc schraefel: Clustered tdb: A clustered triple store for

jena. In: WWW 2009. (November 2008)
24. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C recommendation,

W3C (January 2008)
25. Birbeck, M., Adida, B.: RDFa primer. W3C note, W3C (October 2008)
26. Connolly(Editor), D.: Gleaning Resource Descriptions from Dialects of Languages (GRDDL).

W3C recommendation, W3C (January 2007)


