UNIVERSIDADE DO MINHO

Engenharia Biomédica

Bases de Dados e Redes de Computadores

Exercícios tipo para o mini-teste e exames
Ex1.

Consider a node A connected to a node B via an intermediate switch S .

 The propagation delay on a link is 1 ms (a millisecond ; 1 ms = 10-3 seconds) .

 The transmission rate on the link from A to S is 1 Mbps (1 Mbps = 106 bps) .

 The transmission rate on the link from S to B is 100 Kbps (1 Kbps = 103 bps) .

 Packets are 2000 bits long, including the packet header.

 The network contains no traffic except that described below. So queuing delays at
switch S , if any, will be entirely due to that traffic.
(a) What is the transmission delay for a packet on the link from A to S , expressed in milliseconds ? You must show and explain your work to receive credit.

 Answer : (2000 bits) /(1 x 106 bps) sec = (2000 bits) /(1 x 103) ms

 = 2 ms.

(b) What is the transmission delay for a packet on the link from S to B , expressed in milliseconds ? You must show and explain your work to receive credit.

 Answer : (2000 bits) /(100 x 103 bps) sec = (2000 bits) / 100 ms

 = 20 ms.

(c) Suppose that it takes switch S 1 ms to process a packet, once that packet has been fully received at the switch (i.e. , once the last bit of the packet reaches S) . Two packets are sent out, one after the other, from A to B starting at time zero. At what time, expressed in milliseconds, will the second packet be fully received at node B ? You should bear in mind that the processing of the second packet at switch S cannot start until both this second packet has been fully received at S , and the processing of the first packet at S has been completed. You must show and explain your work to receive credit.

Answer : (1) It will take the first packet 2 ms (transmission time from A to S) + 1 ms (propagation time from A to S) = 3 ms to be fully received at S . (2) The second packet will be fully received at S 2 ms (transmission time from A to S) after that. By that time, the first packet will have finished its processing and will be 1 ms into its 20-ms transmission time from S to B. (3) The second packet will take 1 ms to be processed.
(4) It will then have to wait the 18 ms remaining for the first packet packet to finish its transmission. (5) Now the second packet can begin its 20-ms transmission time from S to B . (6) After a further 1 ms propagation delay from S to B , the second packet will have fully arrived at node B . Putting (1) + (2) + (3) + (4) + (5) + (6) together, we get a total time of 3 + 2 + 1 + 18 + 20 + 1 = 45 ms.

(d) Now suppose that it takes switch S 5 ms to process a packet (and not 1 ms as in part (c) above). The same two packets are sent out, one after the other, from A to B starting at time zero. At what time, expressed in milliseconds, will the second packet be fully received at node B ? Again, bear in mind that the processing of the second packet at switch S cannot start until this second packet has been fully received at S , and the processing of the first packet at S has been completed. You must show and explain your work to receive credit.
 Answer : (1) It will take the first packet 2 ms (transmission time from A to S) + 1 ms (propagation time from A to S) = 3 ms to be fully received at S . (2) The second packet will be fully received at S 2 ms (transmission time from A to S) after that. By that time, the first packet still have 3 ms of processing time left, followed by the 20-ms transmission time from S to B . (3) The second packet will have to wait these 3 ms before its processing can begin. (4) It will then spend 5 ms being processed. By the time the second packet finishes its processing, the first packet will still have 15 ms to go out of its 20-ms transmission time from S to B . (5) The second packet will have to wait these 15 ms before its transmission from S to B can begin. (6) Now the second packet can begin its 20-ms transmission time from S to B . (7) After a further 1 ms propagation delay from S to B , the second packet will have fully arrived at node B . Putting (1) + (2) + (3) + (4) + (5) + (6) + (7) together, we get a total time of 3 + 2 + 3 + 5 + 15+ 20 + 1 = 49 ms. Ultimately, and not coincidentally, the difference between the answer
here and that of part (c) above [49 ms - 45 ms = 4 ms] is equal to the difference between the processing time here and that of part (c) [5 ms - 1 ms = 4 ms] .
Ex.2
Consider a node A connected to a node B via an intermediate switch S.

· The link from A to S, and the link from S to B, are each 100 km long (a kilometre; 1km = 103 metres).

· The signal propagation speed along a link is 2.5 × 108 metres per second.

· Each link has a bandwidth of 1 Mbps (1 Mbps = 106 bps).

· Switch S has a fixed processing delay of dproc = 1 ms (a millisecond; 1 ms = 10-3 seconds).

· At time 0 we start sending two packets, one immediately after the other, from node A to node B. The first packet is 10,000 bits long. The second packet is 1,000 bits long.

· The network contains no traffic except the two packets described above. So queuing delays at switch S, if any, will be entirely due to that traffic.

(a) What is the propagation delay, dprop , along a link, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : dprop = [100 × 103 metres] / [2.5 × 108 metres per second] = 40 / 105 seconds = 0.4 ms .

 (b) What is the transmission delay, d1trans , for the first packet on a link, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : d1trans = 10,000 bits / 1 Mbps = 10,000 / 1,000 ms = 10 ms .

 (c What is the transmission delay, d2trans , for the second packet on a link, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : d2trans = 1,000 bits / 1 Mbps = 1,000 / 1,000 ms = 1 ms .

 (d) What is the queueing delay, d1queue , for the first packet at switch S, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : d1queue = 0. The network contains no traffic except for our two packets, so the first packet will find the outgoing link at S available for immediate onward transmission.

 (e) What is the queueing delay, d2queue , for the second packet at switch S, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : Consider the following timing diagram (which is not to scale).

packet 1
|------------- d1trans -------------|- dprop -|--- dproc ---|------------- d1trans -------------|-dprop-|

packet 2
 |-- d2trans --|- dprop -|--- dproc ---|------- d2queue ------|-- d2trans --|- dprop -|

We can see that d2queue = d1trans - dproc = 10 ms - 1 ms = 9 ms .

(f) At what time, expressed in milliseconds, will the second packet be fully received at node B ? You must show / justify your work to receive credit.

Answer : From the timing diagram of part (e) above, the total time is given by d1trans + d2trans + dprop + dproc + d2queue + d2trans + dprop
 = d1trans + 2 × (d2trans + dprop) + dproc + d2queue = 10 ms + 2 × (1 ms + 0.4 ms) + 1 ms + 9 ms = 22.8 ms .

Ex3.

Consider a node A connected to a node B via an intermediate switch S.

· The link from A to S, and the link from S to B, are each 56 km long (a kilometre; 1km = 103 metres).

· The signal propagation speed along a link is 2.8 × 108 metres per second.

· Each link has a bandwidth of 100 Kbps (1 Kbps = 103 bps).

· Switch S has a fixed processing delay of dproc = 2 ms (a millisecond; 1 ms = 10-3 seconds).

· At time 0 we start sending two packets, one immediately after the other, from node A to node B. The first packet is 2,000 bits long. The second packet is 200 bits long.

· The network contains no traffic except the two packets described above. So queuing delays at switch S, if any, will be entirely due to that traffic.

(a) What is the propagation delay, dprop , along a link, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : dprop = [56 × 103 metres] / [2.8 × 108 metres per second] = 20 / 105 seconds = 0.2 ms .

 (b) What is the transmission delay, d1trans , for the first packet on a link, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : d1trans = 2,000 bits / 100 Kbps = 2,000 / 100 ms = 20 ms .

(c) (0.5 points) What is the transmission delay, d2trans , for the second packet on a link, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : d2trans = 200 bits / 100 Kbps = 200 / 100 ms = 2 ms .

 (d) What is the queueing delay, d1queue , for the first packet at switch S, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : d1queue = 0. The network contains no traffic except for our two packets, so the first packet will find the outgoing link at S available for immediate onward transmission.

 (e) What is the queueing delay, d2queue , for the second packet at switch S, expressed in milliseconds ? You must show / justify your work to receive credit.

Answer : Consider the following timing diagram (which is not to scale).

packet 1
|------------- d1trans -------------|- dprop -|--- dproc ---|------------- d1trans -------------|- dprop -|

packet 2
|-- d2trans --|- dprop -|--- dproc ---|------- d2queue ------|-- d2trans --|- dprop -|

We can see that d2queue = d1trans - dproc = 20 ms - 2 ms = 18 ms .

(f) At what time, expressed in milliseconds, will the second packet be fully received at node B ? You must show / justify your work to receive credit.

Answer : From the timing diagram of part (e) above, the total time is given by d1trans + d2trans + dprop + dproc + d2queue + d2trans + dprop
 = d1trans + 2 × (d2trans + dprop) + dproc + d2queue = 20 ms + 2 × (2 ms + 0.2 ms) + 2 ms + 18 ms = 44.4 ms .
Ex.4

Suppose that EstimatedRTT has a value of 1.0 seconds and Deviation a value of 0.1. Suddenly the RTT jumps to 5 seconds and stays there, so that the next SampleRTT has a value of 5.0. Recall that in response to this SampleRTT the following quantities will be updated as shown :

 EstimatedRTT = (0.9 × EstimatedRTT) + (0.1 × SampleRTT)

 Deviation = (0.9 × Deviation) + (0.1 × |SampleRTT - EstimatedRTT|)

 Timeout = EstimatedRTT + (4 × Deviation)
 Immediately after calculating the updated values, TCP sends out a data segment. Will this segment time out ? Recall that the RTT is now 5.0 seconds. What will the timeout value set for this segment be ? You must show and explain your work to receive credit.
 Answer : The new EstimatedRTT will be (0.9 × 1.0) + (0.1 × 5.0) = 0.9 + 0.5 = 1.4 . The new Deviation (based on the new EstimatedRTT value) will be (0.9 × 0.1) + (0.1 × |5.0 - 1.4|) = 0.09 + 0.36 = 0.45 . The new Timeout will therefore be 1.4 + (4 × 0.45) = 1.4 + 1.8 = 3.2 seconds . This will be the value set for timeout of the segment. Since the RTT is now 5.0 seconds, we cannot expect an acknowledgment for the segment in less than that time, and so the segment will time out.

Ex.5

 Application processes A and B have an established TCP connection between them (i.e. , the three-way, connection establishment phase is already done). A is sending data to B and B is responding with acknowledgments. Suppose that the next byte in sequence that B is expecting from A is byte number 100. In fact, just before our scenario opens, A had just received the following from B :

Seq = 500 ACK = 100 ack

 where ack indicates that the acknowledgment bit in the segment header is set.

 Now, suppose that A sends the following 4 data segments to B, back to back :

Seq = 100 ACK = 500 100 bytes of data

Seq = 200 ACK = 500 100 bytes of data

Seq = 300 ACK = 500 100 bytes of data

Seq = 400 ACK = 500 100 bytes of data

 The first segment is lost, but the remaining three segments all reach B.

 (a) How many ack segments does B transmit to A in response to each of the three data segments reaching it ? With what values in the Seq and ACK fields ?

 Answer : For each of the three segments that B receives it will send one acknowledgment with the following contents :

 Seq = 500 ACK = 100 ack

(b) Assuming that everything that B sends in part (a) above reaches A, what does A do in response ? Does A transmit anything to B ? If so, what (give the values in the Seq and ACK fields, and state how many bytes of data, if any) and when ?

Answer : The three acknowledgments sent by B will be recognized as 3 duplicate acknowledgments for segment 100 by A. This will trigger off the Fast Retransmit mechanism whereby A retransmits data segment 100 : Seq = 100 ACK = 500 100 bytes of data.

Ex.6

Application processes at nodes A and B have an established TCP connection between them (i.e. , the three-way, connection establishment phase is done, and some data has already been exchanged between the two sides). At time t, TCP at node A has its parameters set to the following values:

	SendBase = 101

NextSeqNum = 201

LastByteRcvd = 150

It now receives a segment from B. The segment carries 50 bytes of data. The fields in the segment header carry the following values :

	Sequence number = 201

Acknowledgment number = 151

A bit = 1

Receive window = 60

(a) Does TCP at A update its SendBase value ? If so, to what ? If not, briefly explain why not ?

Answer : Yes. The new value for Sendbase is 151.

The segment received from B is acknowledging that all of A's data bytes, up to but not including byte 151, have been received in order (this is because the Acknowledgment number field in the segment header carries value 151, and the A bit is set). The SendBase in A's send window is set to 101, and the NextSeqNum is 201. So, bytes 101 to 200 of A's data have been sent out and are not yet acknowledged. The segment from B is now letting A know that bytes 101 to 150 have been received. A throws these bytes out of its sending window and updates its SendBase to 151.

(b) Does it update its NextSeqNum value ? If so, to what ? If not, briefly explain why not ?

Answer : No. NextSeqNum gives the value of the sequence number A will use when it next has a new data segment to send to B. This is not affected by the receipt of a segment from B .

 (c) Does it update its LastByteRcvd value ? If so, to what ? If not, briefly explain why not ?

Answer : No. B's data segment is carrying 50 bytes of B's data, starting with byte 201 - i.e. , bytes 201 to 250 inclusive. This is because the Sequence number field in the segment has value 201 and the segment is carrying 50 bytes of data. A's LastByteRcvd has value 150, which indicates that the last byte of data received in order by A from B is byte 150. Thus the new data from B is out of sequence, with data bytes 151 to 200 from B still missing. A will put the 50 bytes just received in its receiver buffer, but will not update its LastByteRcvd since this new data is out of order.

 (d) If TCP at A were now to send an ACK to TCP at B , what value would it put in the Acknowledgment number field in the header of the segment it sends ?

Answer : 151.

As explained in the solution to part (c) above, the data received in the segment from B is out of order. A would ACK the next data byte in sequence that it is expecting from B which, in this case, is the next byte along from LastByteRcvd , i.e. byte 151. Clearly, such an acknowledgment (almost certainly) would be a duplicate ACK for byte 151.

(e) If the application process at A were to give its TCP some new data to send, what is the limit imposed by TCP's flow control mechanism on the number of data bytes that can actually be transmitted out ? You must explain / justify your work to receive credit.

Answer : 10 bytes. The segment from B has Acknowledgment number value 151 and Receive window value 60. That is, B's receiver buffer has space for 60 more bytes starting with A's data byte 151. The value of A's NextSeqNum , 201 , is telling us that A has already sent up to byte number 200 inclusive, i.e. , 50 bytes along from byte 151. This leaves space for only 60 - 50 = 10 more bytes beyond A's data byte 200.

Ex.7
Application processes at nodes A and B have an established TCP connection between them (i.e. , the three-way, connection establishment phase is done, and some data has already been exchanged between the two sides). At time t, TCP at node A has its parameters set to the following values:

	SendBase = 101

NextSeqNum = 201

LastByteRcvd = 150

It now receives a segment from B. The segment carries 50 bytes of data. The fields in the segment header carry the following values :

	Sequence number = 151

Acknowledgment number = 101

A bit = 1

Receive window = 150

(a) Does TCP at A update its SendBase value ? If so, to what ? If not, briefly explain why not ?

Answer : No. The segment received from B is acknowledging that all of A's data bytes, up to but not including byte 101, have been received in order (this is because the Acknowledgment number field in the segment header carries value 101, and the A bit is set). The SendBase in A's send window is set to 101, so A must have previously received news that its data up to byte number 100 inclusive has been received by B , and has already cleaned all bytes preceding byte number 101 out of its send window. In fact, the segment just received from B constitutes a duplicate ACK for byte 101.

 (b) Does it update its LastByteRcvd value ? If so, to what ? If not, briefly explain why not ?

Answer : Yes. The new value for LastByteRcvd is 200.

B's data segment is carrying 50 bytes of B's data, starting with byte 151 - i.e. , bytes 151 to 200 inclusive. This is because the Sequence number field in the segment has value 151 and the segment is carrying 50 bytes of data. A's LastByteRcvd has value 150, which indicates that the last byte of data received in order by A from B is byte 150. Thus, this data from B is new and in sequence, making byte number 200 the last in-order data byte that A has now received from B . So A updates its LastByteRcvd to 200.

 (c) Does it update its NextSeqNum value ? If so, to what ? If not, briefly explain why not ?

Answer : No. NextSeqNum gives the value of the sequence number A will use when it next has a new data segment to send to B. This is not affected by the receipt of a segment from B .

 (d) If TCP at A were now to send an ACK to TCP at B , what value would it put in the Acknowledgment number field in the header of the segment it sends ?

Answer : 201.

As explained in the solution to part (b) above, A has now received up to byte 200 inclusive of B's data in order . A would ACK the next data byte in sequence that it is expecting from B which, in this case, is byte 201 (the next byte along from the updated LastByteRcvd).

 (e) If the application process at A were to give its TCP some new data to send, what is the limit imposed by TCP's flow control mechanism on the number of data bytes that can actually be transmitted out ? You must explain / justify your work to receive credit.

Answer : 50 bytes. The segment from B has Acknowledgment number value 101 and Receive window value 150. That is, B's receiver buffer has space for150 more bytes starting with A's data byte 101. The value of A's NextSeqNum , 201 , is telling us that A has already sent up to byte number 200 inclusive, i.e. , 100 bytes along from byte 101. This leaves space for only 150 - 100 = 50 more bytes beyond A's data byte 200.

Ex.8

Suppose that data are stored on 1.44-MByte diskettes (1 MByte = 106 bytes) that weigh 25 grammes each. Further suppose that a Boeing 747 carries 10 (metric) tonnes (1 metric tonne = 1000 kilogrammes ; 1 kilogramme = 1000 grammes) of these diskettes at a speed of 600 miles per hour over a distance of 3000 miles.
(a) What is the ``transmission rate'' (i.e. , the average delivery rate) in bits per second of this system ? You must show your work to receive credit.
Answer : The data takes 3000 miles / 600 mph = 5 hours = 5 × 60 × 60 seconds = 18,000 seconds to deliver. The aircraft is carrying a total of (10 tonnes × 1000 kg / tonne × 1000 gm / kg) / 25 gm / diskette = 400,000 diskettes.These diskettes represent a total of 400,000 × 1.44 MBytes / diskette = 576,000 Mbytes = 8 × 576,000 Mbits = = 4,608,000 Mbits.

Thus, we have 4,608,000 Mbits delivered in 18,000 seconds, yielding a ``transmission rate'' of 4,608,000 Mbits / 18,000 seconds = 256 Mbits per second.

(b) Stretching the concepts of Problem 1) somewhat, would you characterize the Boeing 747 situation above as: a `high bandwidth / high delay link', a `low bandwidth / low delay link', a `low bandwidth / high delay link', or a `high bandwidth / low delay link' ?

Answer : A high bandwidth / high delay link. 256 Mbps is clearly a high bandwidth. The delay is represented by the flying time of 5 hours, which is clearly high as well!

Ex.9

Below is the routing table of a router. The router receives a packet carrying IP destination address 128.96.34.130.

	 Destination Network
	 Interface

	 128.96.32.0 / 23
	Interface 0

	 128.96.34.0 / 24
	Interface 1

	 128.96.34.128 / 25
	Interface 2

(a) How many entries in the routing table match this destination address? You must
explain/justify your answer in order to receive credit.

Answer : The first two bytes of the destination address, 128.96, match the corresponding bytes of all three entries in the table. So any matches will depend on the third and fourth bytes. Noting that : 32 = 00100000 , 34 = 00100010 , 128 = 10000000 , 130 = 10000010 , it is not too difficult to see that we get a match on the second and on the third entries in the table.

(b) Which interface will the router use to forward the packet ? You must

explain/justify your answer in order to receive credit.

Answer : Interface 2, since this is the longest prefix match found (see pp. 328-329 of textbook).

Ex.10

 IP at a destination host receives the three packets shown below, which are clearly the result of fragmentation.

	 Identifier
	 More
Flag
	 Offset
	 Amount of data IP
 fragment carries

	x
	1
	 0
	 488 bytes

	x
	1
	 488
	 488 bytes

	x
	0
	1000
	 24 bytes

(a) Fill in the table below to show what the original, unfragmented packet looked like.

	Identifier
	 More
Flag
	 Offset
	Amount of data
in IP packet

	 x
	 0
	 0
	1024

(b) Can IP at the host now proceed to reassemble the original packet from the three packets it has received ? You must explain/justify your answer in order to receive credit.

Answer : No. Examining the three fragment IP packets given above, we see that there are 24 bytes of data missing (presumably, these are being carried in one or more packets that have not arrived yet). Because the second packet has Offset 488 and carries 488 data bytes, these must bytes 488 to (488 + 488) - 1 = 975 inclusive. The third packet, instead of starting at Offset 976, starts at Offset 1000. So bytes 976 - 999 inclusive (24 bytes) are missing.

Ex.11

Apart from the fact that TCP goes through handshaking procedures which UDP does not, briefly explain why TCP is said to provide ``connection-oriented '' service whereas UDP provides ``connectionless'' service.

Answer : TCP provides a reliable service for data transfer (data will be delivered without error and in the proper order) as well as flow and congestion control. UDP does not.
 [Also see textbook]

Ex.12

 Briefly explain what the difference is between congestion and flow control.

Answer : Flow control ensures that the sender host does not overwhelm the receiver host by sending too many packets too fast. Congestion control attempts to ensure that the network itself does not become congested due to excessive traffic transmission.

[Also see textbook]

Ex.13
 Ten simultaneous connections are to be multiplexed for transmission across a link. Each connection is bursty, alternating between periods of activity (when it generates data at a rate of 100 Kbps = 105 bits per second) and periods of silence. We can assume that at any given moment, collectively only 5 of the 10 connections, on the average, are active and the remaining 5 are silent . What is the minimal bandwidth that the link must have if we were to use :
 (a) Statistical Multiplexing ? You must explain/justify your answer to receive credit.

Answer : Only five connections on the average are active at any given moment, each at 100 Kbps. This gives a total (average) traffic load of 5 × 100 Kbps = 500 Kbps.

 (b) FDM (Frequency Division Multiplexing) ? You must explain/justify your answer to receive credit.
 Answer : Under FDM each of the 10 connections has to have reserved for it for the duration of the connection the full 100 Kbps it needs when active. Thus we need a total of

10 × 100 Kbps = 1 Mbps.

Ex.14
The path from a source node to the destination node is five hops long, i.e., there are 5 links (with 4 intermediate switches). Each link has transmission capacity 1 Mbps (106 bits per second). For the questions below, ignore processing and queueing delays at the switches and propagation delays along the links. Also ignore any headers that are

 added to the message/packets.

 (a) A single 1 Mbit message is sent from source to destination. How long will it take till it is fully received at the destination, i.e., till the last bit of the message reaches the destination ? You must show and explain your work to receive credit.

 Answer : Transmission delay across 1 link = 1 Mbit / 1 Mbps = 1 sec. Therefore, it will take 5 × 1 sec. = 5 seconds for the message to travel the 5 hops and be fully received at the destination.

(b) Now suppose that the message is broken up into 10 packets of 100 Kbits (105 bits) each. The packets are sent out from the source node one after the other, with no delay between one packet and the next. How long will it take till the last packet is fully received at the destination ? You must show and explain your work to receive credit.
 Answer : Transmission delay across 1 link = 100 Kbits/ 1 Mbps = 0.1 seconds. Therefore it will take 5 × 0.1 sec. = 0.5 seconds for the first packet to be fully received at the destination. After that to that, each subsequent packet will take a further 0.1 seconds (the transmission delay across the last link) to be fully received at the destination, because of the `pipelining' effect. Therefore the total time till the last packet is fully received at the destination = 0.5 + (9 × 0.1) = 1.4 seconds.

Ex.15
When networks are used for streaming real-time voice applications, the amount of time it takes a source node to build up a packet for transmission can be an important consideration. Consider the following situation : A host is converting analogue voice ``on the fly'' into a digital 64-Kbps bit data stream for transmission (1 Kbps = 103 bits per second). The host groups the data bits produced into 53-byte packets for transmission. Each packet consists of a 5-byte header; the remaining 48 bytes carry bits from the data stream. Assume that the time it takes to carry out the analogue-to-digital conversion, and the time it takes to fill in the 5-byte header of a packet with control information, are both negligible and can be ignored. What is the maximum packet-per-second rate at which the host can send out the packets ? You must show and explain your work to receive credit.
Answer : 48 bytes = 48 × 8 bits. Filling in the data portion of a packet at a rate of 64 Kbps = 64 bits per msec. will take 48 × 8 / 64 = 48 / 8 msec. = 6 msec. So the host can send out packets at a rate of 1 packet every 1 / 6 msec = 1000 / 6 packets per second = 166.67 packets per second.

Ex.15

 (a) Telecommunication networks can be classified as either Circuit-switched or Packet-switched. To which category do Virtual Circuit networks belong ?

 Answer : Packet switched.

 (b) Briefly explain your answer to part (a) above.

 Answer : In virtual circuit networks the data is split up into packets for transmission. Each packet is then switched hop by hop along the path of the virtual circuit to the destination. In circuit-switched networks the data is sent as a single block down the dedicated, end-to-end circuit that has been set up to the destination.

 (c) Consider the network below in which A, B, C, D and E are hosts, and S1, S2 and S3 are switches. The labels `1', `2' and `3' next to the links at each switch are the interface numbers.

[image: image1]
 The VC-number translation tables at the switches are :

	Switch S1

	(Incoming)
Interface
	(Incoming)
VC #
	(Outgoing)
Interface
	(Outgoing)
VC #

	1
	2
	3
	1
	(a)

	1
	1
	2
	3
	(b)

	2
	1
	3
	2
	(c)

	
	
	
	
	

	Switch S2

	(Incoming)
Interface
	(Incoming)
VC #
	(Outgoing)
Interface
	(Outgoing)
VC #

	1
	1
	3
	3
	(a)

	1
	2
	3
	2
	(c)

	
	 Switch S3
(Incoming)
Interface
(Incoming)
VC #
(Outgoing)
Interface
(Outgoing)
VC #
1
3
2
1
(a)
1
2
3
1
(c)

Identify all virtual circuit connections by naming the two hosts at the end points of each connection.
 Answer : Tracing through the table rows labeled (a) shows a virtual circuit between nodes A and D. The row labeled (b) shows a circuit between nodes A and B. Tracing through the rows labeled (c) show a circuit between nodes B and E.

Ex.16
 In the Internet Protocol Stack, briefly explain what the basic difference is between the functions of the Transport and the Link layers ?
 Answer : Transport layer protocols are responsible for managing the traffic on the end-to-end communication channel between (a given pair of application processes on) two hosts. Link layer protocols are responsible for managing the traffic along a single link (one `hop') only, between two adjacent nodes.

 [Also see textbook]

Ex.17
Name an example of an ``out of band '' Application layer protocol, and briefly explain in what respect it is said to be ``out of band ''.

Answer : FTP (File Transfer Protocol) is an ``out of band'' Application layer protocol. It is so called because it uses distinct, separate connections for data and control communications. This is relatively unusual : the more typical situation is that of an

``in band'' protocol which intermixes data and control in the same connection.

 [Also see textbook]

Ex.18
 (a) What is the basic difference between the following two HTTP GET request messages?

 GET /fruit/kiwi.gif HTTP/1.0 GET /fruit/kiwi.gif HTTP/1.0
 User-agent: Mozilla/4.0 User-agent: Mozilla/4.0
 If-modified-since: Mon, 22 Oct 2001 15:08:37

Answer : The GET request on the right is a conditional GET. It is requesting the server to send the file only if it has been updated since the date given in the If-modified-since header line.

(b) Briefly explain under what conditions an HTTP client would issue the second of these GET messages (the one on the right above) rather than the first.
Answer : The client issuing the conditional GET must have caching capability, and must also already have a copy of the file in that cache. That copy would have a last modified date as shown in the If-modified-since header line of the conditional GET request. [Also see textbook]

Ex.19
The HTTP protocol usually uses TCP. However, it can be configured to use UDP instead. Suppose within your Web browser you click on a link to obtain a very small base HTML file from some server. Further suppose that this file indexes four very small objects on that same server. Let R be the RTT (round-trip time) between your host and the server. Ignoring transmission times and all other network delays, what is the minimum

number of parallel connections that nonpersistent HTTP using UDP would need to have so that it retrieves the base HTML file and all its objects faster than would persistent HTTP with pipelining under TCP ? You must explain/justify your answer to receive full credit.

 Answer : For persistent HTTP with pipelining under TCP, it will take 2 RTTs for the TCP handshaking and fetching the base HTML file. After one more RTT all four indexed objects will also have been fetched from the server. So the total time is 3R. For nonpersistent HTTP under UDP, and since UDP does not go through a handshaking procedure, it take 1 RTT to fetch the base HTML file and realize that four indexed objects still need to be fetched. If all four are fetched in parallel, it will take one more RTT, for a total of 2R instead of the 3R of the TCP case above. Less than four parallel fetches will not yield a faster retrieval than the TCP case.

Ex.20
Briefly explain in what sense HTTP is said to be a ``stateless'' protocol, but FTP is not.

 Answer : HTTP maintains no information on the status of a client's activity during the connection. Every request made is treated as a separate event in its own right, unconnected to any previous activity that might have transpired during the HTTP session.
 FTP, on the other hand, does maintain information on the state of the client's activity (for example, user name, authorization status, current remote directory, and so on.

 [Also see textbook]

Ex.21
Briefly explain why the SMTP protocol needs MIME (Multipurpose Internet Mail Extensions) for email messages.
Answer : SMTP assumes that email message content is encoded in 7-bit ASCII. MIME is needed so that non-ASCII encoded data (e.g. , jpeg files) can be handled within this restriction and sent as SMTP email.

 [Also see textbook]

Ex.22
Consider Web-based email with HTTP. Is this more akin to using POP3 (Post Office Protocol) or IMAP (Internet Mail Access Protocol) ? You must briefly explain your

answer to receive full credit.
 Answer : It is more like using IMAP than using POP3. Both Web-based email and email server access with IMAP permit the user to maintain his personal email environment (folders, etc.) on the mail server itself rather than on his local node. Thus a `nomadic' user can gain access to that environment from any node. POP3 does not permit that (though it does permit the user to access the raw contents of his email server mailbox - but not his personal email environment - from any node).

 [Also see textbook]

Ex.23
 (a) What is the basic purpose of the DNS protocol.

 Answer : To ``translate'' node domain names into IP addresses.

 [Also see textbook]

(b) Briefly explain what the difference is between iterative and recursive queries in DNS.

 Answer : In recursive querying, when a DNS server receives a query to which it does not have the answer, it will undertake to query the next server in the hierarchy on behalf of the source node of the query as if it itself were the source of that query. Each server along the query `path' recursively do this, and forwards the answer received to the node that had sent it the query. In iterative querying, the DNS server will instead give the source node the IP address of the next DNS server along the query path so that the source node can pursue the query directly on its own behalf.

 [Also see textbook, pp. 127 - 129]

Ex.24
 Briefly explain why it is usual to implement servers using multi-threaded rather than single-thread code.
 Answer : In order to serve multiple clients and/or requests simultaneously, we need a

 multi-threaded server so that each client/request can be attended to by its own thread. A single-threaded server can only handle one client or request at a time.

Ex.25

In DNS , Type = CNAME and Type = MX queries both return canonical node names: the canonical name for an alias host name in the case of CNAME, and the canonical name for a mail server in the case of MX. Since both queries return the canonical name for a node, why does DNS make a distinction between (and keep distinct Resource Records in its database for) the two types of queries ? In other words, briefly explain why an MX query cannot be successfully submitted as a CNAME query.

Answer : While both types of query return a canonical name for a node, the information supplied by the client in each query is distinctly different. In the case of a Type=CNAME query, the client is submitting the (domain) name of a node (for example, sbbadr.cs.sunysb.edu, which is the name of the workstation in my office) in order to find out what the canonical name for the node is. In the case of a Type = MX query, the client is submitting the name of a domain (typically, extracted by SMTP from an email address ; for example, cs.sunysb.edu, extracted from badr@cs.sunysb.edu) in order to get the canonical name of the mail server for that domain (`mailer.cs.sunysb.edu', or whatever).
Ex.26

The term `caching' in the context of Web surfing applies to two very different scenarios, and so is ambiguous. Briefly describe these two scenarios, making clear the difference between them.

Answer : Web caching can mean local caching in the hard disk of the client node, managed by the client browser ; and / or proxy server caching in an intermediate node. See bottom of p. 101, and pp. 156 - 157 in the (2nd edition of the) textbook for details.
Ex.27

Which of UDP or TCP would you use to run each of the following applications ? You must briefly explain your answers to receive credit.
(a) File transfer.

Answer : TCP . We surely want transmission reliability, and the application is not time-sensitive.

(b) Stored video.

Answer : UDP . Streaming the video is time-sensitive, so we do not want to be restricted by TCP's congestion control mechanism. Furthermore, the application is loss-tolerant.

(c) A transaction processing application in which the client sends a very brief request, and receives a very brief response from the server. The server has to deal with a very heavy number of such requests.

Answer : UDP . Because of the heavy anticipated load on the server, combined with the fact that the transaction exchange is very brief, we do not want to incur the TCP overhead for connection establishment and termination. (Note that this situation is somewhat similar to that of a DNS server. DNS uses UDP).
Ex.28

(a) Would you characterize SMTP as a `stateless' protocol ? You must briefly explain your answer to receive credit.

Answer : Yes. During an SMTP interchange between client and server, neither side maintains any management or status-related information about the state of progress of the transaction.

(b) Would you characterize HTTP as an `out of band' protocol ? You must briefly explain your answer to receive credit.
Answer : No. In HTTP, control-related exchanges between client and server (the request, response and header lines in HTTP messages) take place along the same communication channel as the data exchanged.

(c) Would you characterize DNS as a `push' or a `pull' protocol ? You must briefly explain your answer to receive credit.
Answer : A `pull' protocol. The client sends the server a DNS request in order to `pull' information from the server.
Ex.29

(a) Suppose we are building a network specifically for (digitized) voice telephony. Which of Statistical Multiplexing, FDM (Frequency Division Multiplexing) or TDM (Time Division Multiplexing) would make the most efficient usage of link bandwidth ? You must briefly explain your answer to receive credit.

Answer : If the focus is efficient usage of link bandwidth, then Statistical Multiplexing would be the choice. The characteristics of a voice telephony communication is that there are, in each direction, periods of silence (no data transmission) alternating with periods of transmission activity. TDM and FDM would give the communication a static allocation of a portion of the bandwidth, and this bandwidth would go to waste during the silent periods. Statistical Multiplexing dynamically allocates the available bandwidth amongst communications currently in an active transmission phase.

(b) How would your answer to part (a) change, if at all, if the network were being built for live video transmission instead ? You must briefly explain your answer to receive credit.
Answer : Live video would be transmitting continuously, with no periods of silence. So TDM or FDM would not be inappropriate, especially since, in giving the transmission a fixed allocation of bandwidth, they would ease the problem of meeting the application's delay-intolerant needs.

(Note: This answer is a little on the simplistic side, since it ignores the fact that due to encoding and compression schemes, video transmission does not occur at a steady, unvarying rate. So a static allocation of bandwidth at the peak transmission rate of the video under TDM and FDM would be somewhat wasteful of bandwidth. On the other hand, Statistical Multiplexing is no panacea either, due to the difficulty it would pose in meeting the application's Quality-of-Service needs.)

Ex.30
For each layer below, name a protocol that belongs to that layer:

(a) Network Layer

Answer : IP
(b) Application Layer

Answer : DNS, FTP, HTTP, SMTP
(c) Transport Layer

Answer : UDP, TCP
Ex.31
Suppose within your Web browser you click on a link to obtain a very small base HTML file from some server. Further suppose that this file indexes ten very small objects on that same server. Let R be theRTT (Round Trip Time) between your host and the server. Ignoring transmission times and all other network delays, how many RTTs elapse from when you click for the base HTML file till all objects are displayed, assuming:

(a) Nonpersistent HTTP with no parallel TCP connections ? You must briefly explain/justify your answer to receive credit.
Answer : 22R . Separate TCP connections would be established, serially, one after the other, to fetch, first the base HTML file, and then each of the ten objects it indexes. Each such fetch requires two RTTs. The first of these two RTTs is used for the first two handshakes of the TCP three-way handshake. The `outbound' half (i.e., going from the client to the server) of the second RTT constitutes both the third step of the handshaking, as well as the HTTP request for the object. The `inbound' half (i.e., returning to the client from the server) of the RTT is the response to the HTTP request.

(b) Nonpersistent HTTP with up to six parallel TCP connections ? You must briefly explain/justify your answer to receive credit.
Answer : 6R . Two RTTs are needed to fetch the base HTML file (see (a) above). Then a delay of two RTTs will occur as six parallel TCP connections are simultaneously established and six of the ten embedded objects are fetched. Finally, a further delay of two RTTs will occur as four parallel TCP connections are simultaneously established to fetch the four remaining embedded objects.

(c) Persistent HTTP with pipelining ? You must briefly explain/justify your answer to receive credit.
Answer : 3R . Two RTTs are needed to establish the persistent TCP connection and fetch the base HTML file. Then ten HTTP requests will be sent back-to-back for the remaining ten objects, which will then arrive, also back-to-back. Since we are ignoring transmission times and other delays, this will take just one further RTT.
Ex.31
A student is proposing to develop a new transport-level protocol which is both stateless and connection oriented. Briefly comment on the merits of this proposal.

Answer : The proposal is virtually an oxymoron, a contradiction in terms. CSE 310 students know better and would never make such a proposal.
A connection-oriented protocol is one in which the two peers go through a handshaking connection establishment phase before exchanging data. The reason they do this is that the protocol wants to provide some level of data transmission reliability. In order to do this each peer must maintain a state that tracks the data exchange so that it can effectively manage it. The purpose of the handshaking is to enable the peers to initialize their respective states before commencing data exchange. It would be impossible to provide any kind of data transmission reliability if the peers were stateless, i.e., not maintaining state information that keeps up with the progress and details of the data transmission and its condition.

Ex.32
A user at node A uses FTP to upload four files to node B before terminating the FTP session.

(a) Which of the two nodes is the client and which the server in this scenario ? You must briefly explain/justify your answer to receive credit.
Answer : Node A is the client and node B the server. In the client/server paradigm the process that initiates communication is, by definition, the client. The actual direction of the data exchange does not enter into it.

(b) How many TCP connections in total were established during the FTP session ? You must briefly explain/justify your answer to receive credit.
Answer : 5 connections. The control connection to server port 21 is established first. It persists throughout the session. Then, for each of the four files that will be transferred, a separate connection is established (at server port 20) in turn, then closed at the end of the file transfer, with a new connection established in its place for the next file transfer.

(c) If we were to draw an analogy between FTP and HTTP, in what sense may FTP be said to establish persistent connections, and in what sense may it be said to establish nonpersistent connections ? You must briefly explain/justify your answer to receive credit.
Answer : The ``out of band'' control connection (at server port 21) persists throughout the session between client and server, irrespective of how many files are transferred, and in which direction, during the session. For each file to be transfered, a ``nonpersistent'' connection is set up with server port 20 and immediately closed when the transfer is done. A new nonpersistent connection is established for the next file transfer in the session.

Ex.33
Consider a hierarchy of DNS servers in which all local and authoritative name servers communicate directly with a root name server: there are no intermediate name servers between the local and authoritative servers and the root server. Furthermore, assume that all name servers (local, authoritative, and the root) have empty caches. Suppose a user generates a DNS query about some node which does not belong to the domain of the user's local name server.

(a) How many request/reply message pairs will the user's local name server have to deal with if recursive querying is used ? You must briefly explain/justify your answer to receive credit.
Answer : 2 request/reply message pairs. First the local name server receives the user's request message, to which it eventually replies. Before replying, however, it will send the root server a request message, to which it receives a reply. It uses the contents of this reply from the root server to formulate its own reply to the user's original request message.

(b) How many request/reply message pairs will the user's local name server have to deal with if iterative querying is used ? You must briefly explain/justify your answer to receive credit.
Answer : 3 request/reply message pairs. First the local name server receives the user's request message, to which it eventually replies. Before replying, however, it will send the root server a request message, to which it receives a reply. This reply from the root server directs the local server to contact the authoritative server. The local server now sends the authoritative server a request message, and receives a reply. It uses the contents of this reply from the authoritative server to formulate its own reply to the user's original request message.
(c) How many request/reply message pairs will the root server have to deal with if recursive querying is used ? You must briefly explain/justify your answer to receive credit.
Answer : 2 request/reply message pairs. First the root server receives the local name server's request message (cf. answer to part (a)), to which it eventually replies. Before replying, however, it will send the authoritative server a request message, to which it receives a reply. It uses the contents of this reply from the authoritative server to formulate its own reply to the local name server's original request message.

(d) How many request/reply message pairs will the root server have to deal with if iterative querying is used ? You must briefly explain/justify your answer to receive credit.
Answer : 1 request/reply message pair. The root server receives the local name server's request message, to which it sends a reply directing the local name server to the authoritative server (cf. answer to part (b)).
Ex.33
Consider the following terms: a (network layer) packet, an (application-layer) message, a (link-layer) frame, and a (transport-layer) segment. List the terms in the order in which they encapsulate one other.

 Answer : A frame encapsulates
 a packet , which encapsulates
 a segment , which encapsulates
 a message .

