
An Object-level Gateway Supporting Integrated-Property Quality of Service

Richard Schantz, John Zinky, David Karr, David Bakken, James Megquier, Joseph Loyall
BBN Technologies/GTE Internetworking

10 Moulton Street; Cambridge, Mass. 02138 USA
fschantz,jzinky,dkarr,dbakken,jmegq,jloyall g@bbn.com

Abstract

As networks and the use of communication within appli-
cations continue to grow and find more uses, so too does
the demand for more control and manageability of vari-
ous “system properties” through middleware. An important
component supporting an integrated property architecture
is the concept of an object gateway, which is a quality-of-
service (QoS) aware element transparently inserted at the
transport layer between clients and objects to provide the
managed communication behavior for the particular prop-
erty being supported. In this paper, we introduce the con-
cept of a QoS-oriented gateway to integrate a variety of
QoS enforcement and implementation mechanisms control-
ling the underlying distributed interactions. We discuss the
functions performed by such a component in achieving the
desired overall end-to-end QoS, and the design considera-
tions underlying our current implementation. We conclude
with experiences to date with two variations of the gate-
way: one controlling managed latency and throughput us-
ing bandwidth allocation, and one controlling dependabil-
ity through the coordination of object replicas.

1. Introduction

Middleware has emerged as the answer to making it eas-
ier to develop distributed applications. It does so by insert-
ing higher levels of abstraction between the network and
the applications to provide system software oriented toward
managing common communication and resource manage-
ment tasks from the perspective of the application devel-
oper. As the network and the use of communication within
applications continues to grow and find more uses, so too
does the demand for more control and manageability of
those resources through its middleware interface. In fact,
the recent popularity of Web interactions has focused atten-
tion on the diverse and dynamically varying computer and
communications environments which may be available at
any given time for network based applications, and man-

aging the tradeoffs in application implementation that these
variations demand.

The software underlying Quality Objects (QuO) [18, 9]
is advanced, reusable middleware enabling a new genera-
tion of flexible distributed applications which have more
explicit control over their resource management strategies,
as well as being both easily reconfigurable and dynami-
cally adapting to changes in network and computing en-
vironments. In one view, QuO is an extensible software
development framework built on a distributed object mid-
dleware base, which makes it easy to support dynamic run-
time adaptation to changing configurations, requirements or
availability of resources. In a complementary view, QuO
is an evolving architecture with a growing base of compo-
nents and mechanisms filling out this architecture to support
an integrated quality-of-service (QoS) concept for man-
aging collections of “system properties” and the tradeoffs
among these properties to support varying operating objec-
tives. The “system properties” that are under investigation
in current integration activities are managed communication
bandwidth, dependability, real-time behavior, and security.

QuO was designed to help distributed application pro-
grammers to more effectively manage the “how well” of
the client-object interaction, by providing a flexible envi-
ronment for handling and integrating QoS attributes. A key
element required for middleware to support QoS, but almost
totally absent from today’s commercial and research prod-
ucts, is to provide a relatively simple way to organize, col-
lect, disseminate, integrate, and act upon an expanding set
of dispersed QoS-related information. Convenient access
to such information will enable better decision making and
adaptation. In addition, there are a variety of enforcement
mechanisms either currently available or under investiga-
tion, each typically with its own operating characteristics
and narrow areas of applicability.

It is important that the QuO infrastructure be indepen-
dent of any particular QoS property, and be easily extensi-
ble. Toward accomplishing this technical challenge, we had
a number of related objectives. Two of these objectives, the
ones most closely associated with the design and implemen-

Accepted for publication in Proceedings of ISORC ’99, The 2nd IEEE International Symposium on Object-oriented
Real-time distributed Computing, May 2-5, 1999, Palais du Grand Large 35 407 Saint-Malo, FRANCE.

tation of the QuO object gateway which is the focus of this
paper, are highlighted here:

� Providing a Common Platform for Integrated QoS Di-
mensions

Regularize the implementations for specification,
monitoring, reserving, and adapting to changes, as ap-
plied to the various QoS dimensions. This avoids the
single-point solutions which are usually tied closely
only with a particular QoS dimension or enforcement
algorithm, making it difficult or impossible to use more
than one simultaneously. It also serves as a common
interface to an integrated and combined QoS capabil-
ity, which can take into account the synergies and con-
flicts among the various QoS dimensions.

� Facilitating Integration of New and Alternative Control
Mechanisms and Policies

It is important that the QuO infrastructure support ad-
ditional information collection and additional mech-
anisms and policies to accommodate new innovation
and extend the narrow range of behavior moderated by
current mechanisms.

In this paper, we introduce an additional component,
that of a QoS-oriented Object Gateway for integrating with
a variety of QoS enforcement and implementation mecha-
nisms controlling the underlying distributed interactions. A
QuO object gateway is a QoS-aware element inserted at the
transport layer between clients and objects/servers to pro-
vide managed communication behavior for the particular
QoS property being supported. The two main problems ad-
dressed by the gateway design are

1. how to insert the QoS managed behavior into existing
functional end-to-end distributed object pathways, and

2. how to enable the integration of a variety of specific
enforcement mechanisms into a common framework,
with minimal additional mechanism developer imple-
mentation effort, allowing both substitution of specific
mechanisms and integration across properties.

In order to understand the role and operation of the QuO
Object Gateway, it is necessary to establish some of the
underlying basics of what QuO is, and why it is what it
is. To do this, we first describe some background concepts
from distributed object computing in general, and CORBA
specifically, that are needed to understand QuO at a very
high level. After describing these, we discuss the functions
performed by an object gateway component in achieving
the desired overall end to end QoS, and the design consid-
erations underlying our current implementation. We then
provide a more detailed view of two variations of the object

gateway — one controlling managed latency and through-
put between clients and objects using bandwidth allocation,
and the other controlling degrees of dependability through
the coordination of object replicas. We conclude with ex-
periences to date and future evolution of the object gateway
concept within QuO.

2. Brief Overview of Distributed Objects,
CORBA, and QuO

2.1. Distributed Objects

Years of experience in the field of software engineering
has proven that organizing the software development pro-
cess around a coherent underlying model is essential for
effectively developing systems of any complexity. While
there is still considerable debate about which development
paradigm is most effective for the large scale, network-
based systems envisioned for QuO, the distributed object
paradigm is the most advanced, mature, flexible context
available today and was selected for this work. At the core
of that model, software is broken up into collections of
clients and objects dispersed throughout the network, and
clients invoke operations on different types of objects to ac-
complish the interactions needed to bind the pieces together
into a running system. Within this middleware context
many of the problems of distributed computing such as re-
mote location interoperability, heterogeneity, transparency,
common services, synchronization, etc., are coherently de-
livered through the distributed object model.

Today, there are a number of distinct, sometimes disjoint,
sometimes converging instantiations of these ideas, chief
among them (in chronological order) CORBA, DCOM and
Java RMI. They vary by scope, constituency, maturity, tech-
nical focus, and assumptions about the past, present and fu-
ture. However, the underlying approaches to many of the
fundamental technical problems are similar, and the QuO
concepts can apply equally well to any of them. The imple-
mentation, however, must be bound to a particular context,
and we have chosen CORBA as the initial implementation
vehicle, with DCOM and hybrid CORBA/DCOM versions
planned for next year. While we support Java as a program-
ming language and in fact built some of QuO using Java, we
do not at this time have plans for a Java-RMI based QuO,
as the Java internals seem at this moment to be converging
with CORBA. The version of QuO described in this paper
is completely CORBA-based.

In any distributed object computing scheme, the client’s
functional pathis the flow of information between a client’s
invocation to a remote object and back. While getting
the information between the remote entities is the job of
the middleware utilizing the underlying network capabil-
ities, the information itself is application-specific and de-

2

termined solely by the functionality being provided (hence
the term “functional path”). The functional path deals with
the “what” of the client-object interaction from the perspec-
tive of the application (e.g., the object runs a complex sim-
ulation for the client). QuO also adds asystem path(or
QoS path), which involves issues regarding “how well” the
functional interaction appears to work (for example, the re-
sources committed to the interaction (and possibly subse-
quent interactions), proper behavior when ideal resources
aren’t available, the degree of security needed, the recovery
strategy for detected faults, etc.). Much of the job of QuO is
to facilitate the collection, organization, and dissemination
of the information required to manage “how well” the func-
tional interaction occurs, and enable the decision making
and adaptation needed under changing conditions for these
“how well” properties. We call these properties collectively
quality-of-service attributesand we call such information
QoS Meta-Data.

2.2. CORBA Components

See Figure 1 for an overview of the software components
in a simple CORBA environment. In summary, a client first
obtains areferenceto the object it wishes to invoke by call-
ing the bind method on the object’s class. This creates a
localproxyobject and returns a pointer to it; the client uses
this pointer just like it would a pointer to a local object (e.g.,
one it created with thenew operator in C++). When the
client makes an invocation to a remote object, it does so us-
ing the object reference the Object Request Broker (ORB)
passed back from the bind call. This sends the invocation
to the proxy, which is code generated in the client’s pro-
gramming language based on the IDL interface for the ob-
ject and the IDL mapping for that programming language
(e.g., C++, Ada95, Java). The proxy creates a request object
of class CORBA::Request and passes this on to the ORB.
The ORB sends this request to the computer on which the
server resides. There the ORB makes an upcall (via some-
thing roughly equivalent to the client-side proxy) to the code
which implements the method the client has called. When
this returns, any return value orout or inout parameters are
placed in a CORBA::reply object and sent back to the ORB
for delivery to the client. There, the request is passed back
to the client via the ORB. The client’s proxy then uses the
values in this reply to set any out and inout variables in the
client’s program, then returns the return value, and in doing
so of course returns control to the client’s code.

2.3. QuO Components

QuO augments this view in a number of ways to better
support the “how” as well as the adaptive behavior men-
tioned above, as shown in Figure 2. The components added

Figure 1. CORBA Architectural Components

with this configuration will be discussed in the remainder of
this section.

Figure 2. QuO Architectural Components

There are three complementary parts to QuO. The first
part deals with the constructs needed to introduce the con-
cepts for predictable, adaptable behavior into the applica-
tion program development environment, including flexible
specification of desired levels of QoS properties. The sec-
ond part deals with providing runtime middleware to en-
sure appropriate behavior, including collecting information
and coordinating any needed changes in behavior. The third
part deals with the inserting the mechanisms for achieving
and controlling each particular aspect of QoS which is to be
managed, including aggregate allocation and control poli-
cies.

QuO’s functional path is a superset of the CORBA func-
tional path described above. QuO interposes adelegate
component in the client’s functional path, whose purpose is
to do the middleware level QoS decision making. In the cur-
rent version of QuO, instead of calling the ORB’s bind call
as with a current CORBA application, the QuO client calls
QuO’s connect call, which has a superset of the arguments
for bind. Connect creates the delegate (which may itself call
an ORB bind, saving the object reference) and returns to the

3

client a pointer to the delegate. The delegate implements the
exact same API as the client’s proxy, and is automatically
generated by the QuO code generators based on the IDL
and the QuO QDL (Quality Description Languages) which
have been developed to capture the relevant QoS oriented
information. At this time, QDL consists of two languages,
CDL which describes QuO contracts, and SDL which de-
scribes selection information. Figure 3 represents the role
of QDL in enhancing the standard IDL interfaces currently
provided with the distributed object computing paradigm.
Thus, to use QuO a client only has to modify its bind calls,
not all its object invocations. Interposing the delegate in this
relatively transparent manner allows the client’s functional
path to be instrumented and controlled in ways described
below.

Figure 3. QuO’s Quality Description Lan-
guages and Generated Code

A QuO contract provide a means to specify what the
client requires or desires in terms of QoS as well as means
for it to be informed of what level of QoS it is actually re-
ceiving. This also allows a client to cleanly specify, in an
application friendly manner, what to do when what it is ac-
tually receiving diverges from its expectations. QuO’s Con-
tract Description language is used for writing contracts, and
is described below. The contract can specifycallbacksto
the client to alert it to when conditions have changed suf-
ficiently to warrant the client being notified (and possibly
adapting on its own behalf). QuOsystem conditionsare ob-
jects which project a value into a contract. As such, they are
a way for the contract to integrate information from differ-
ent sources, or looked at from another point of view, are the
mechanism to connect complex information sources into the
QuO context in a relatively simple manner. System Condi-
tions also provide a way for a contract to control or influ-
ence the way a property such as bandwidth or replication is
managed, by serving as a conduit for passing on the client’s
requested level of service to the appropriate property man-

ager.
Mechanism Managers(akaProperty Managers) are re-

sponsible for managing a given QoS property (such as the
availability property via replication management or con-
trolled throughput property via RSVP reservation manage-
ment) for a set of QuO-enabled server objects on behalf of
the QuO clients using those server objects.

3. An Object Gateway Component

3.1. The Need for an Object Gateway

In order to provide the type of controllable, predictable,
and manageable environment we seek with QuO, we need
mechanisms to control and enforce resource management
and synchronization for the networked entities. An impor-
tant factor behind the rising level of interest in QoS is the
increased embedded use of still largely unmanaged network
communication services. The inherent variability in using
these services, due to changes in resource configuration,
load, relative location and current availability (operational
status), make the end to end results delivered to the applica-
tion highly unpredictable. This has led to the development
of a variety of mechanisms and approaches for better man-
ageability as well as to encapsulate some of its complex-
ity. However, these mechanisms are usually at a fairly low
level in the protocol stack or closely tied to the transmission
mechanisms where they can better control behavior. That
makes them difficult to incorporate into the software en-
gineering paradigms close to the application programmer’s
level of abstraction, for example distributed object comput-
ing and QuO. One possible approach would be to develop
an enhanced specialized ORB with just the right properties.
An alternative that we were seeking would work with a va-
riety of off-the-shelf ORB products, both commercial and
experimental.

Our solution, and the one adopted for QuO, is to combine
control elements at the object interface level with control el-
ements at the transport level in a translucent manner. That
is, to link the desired behavior at the client/object interfaces
with the appropriate behavior at the communication inter-
faces, in a manner which makes visible and controllable
(versus transparent) the connection between the two. An
important new component supporting the integrated prop-
erty QuO architecture is the concept of aQuO object gate-
way. An object gateway is the QoS aware element inserted
at the transport layer between clients and objects to pro-
vide the managed communication behavior for the particu-
lar QoS property being supported. In the QuO architecture,
it is the job of the QuO object gateway to be superimposed
at the transport level to apply the appropriate mechanisms
needed to fulfill the obligations incurred at the QuO con-
tract level. Figure 4 illustrates the QuO Object Gateway

4

concept. Since it is highly desirable that the QuO system

Figure 4. The Role of the QuO Object Gateway

be useable with a variety of ORB products, and the ORB is
generally responsible for establishing communication with
the designated object, our immediate goal becomes insert-
ing the proper mechanism after ORB processing, but before
handing the request off to the network transport subsystem.
In CORBA, the open protocols between ORBs needed to
support ORB interoperability (Interoperable Internet Oper-
ation Protocol, or IIOP), also allows the seamless insertion
of a QuO gateway function to provide the appropriate trans-
port level conditioning needed to meet the high level QoS
contract.

3.2. Two Simplified Object Gateway Examples

Depending on the QoS property being managed, and de-
pending on the choice of mechanism to provide or control
the communications needed to support that property, dif-
ferent specialized protocols are inserted in the control path
between clients and objects. For example, for a bandwidth
reservation style of communication control, RSVP [17] can
be the mechanism of choice to be used by the gateway to
“condition” the internetwork connectivity to meet the QoS
objectives between objects. Similarly, to deliver certain lev-
els of dependability, a group communication mechanism,
such as Ensemble [6] implementing a virtual synchrony
form of “multicast” communication discipline, can be the
mechanism of choice to be used by the gateway to “condi-
tion” the connectivity to meet replicated availability objec-
tives. Other properties, such as real time constraints and se-
curity, will also have specific mechanisms which contribute
to meeting their QoS objectives.

Before describing the organization and design of the
gateway itself, it would be useful to develop the two ex-
amples cited above in a bit more detail, to illustrate the
multipurpose nature of the mechanisms plugged into the

gateway. The DIRM project [2] has used QuO to develop
an initial high-level API that allows applications to control
bandwidth management QoS for their network communica-
tions using resource reservation. This API hides much of
the complexity of the underlying reservation control struc-
tures and present QoS abstractions in a form natural to ap-
plication developers.

In this first example a CORBA client has indicated con-
tract regions, specifying the expectations on bandwidth
availability in terms of invocations between the client and
object (for this example, think of the object as a data server,
an image server, or even a web server). Through its con-
tract, the application requests sufficient bandwidth to re-
trieve each image within a specified time and monitors the
measured latency. The client adapts if it does not receive
adequate QoS by switching to an alternate server that deliv-
ers smaller images or data payloads. In the absence of any
transport level enforcement mechanism, the QuO applica-
tion merely notes the expectation, requests that the func-
tional invocation be handled and delivered normally by the
ORB, and measurement components put in place to signal
when expectations are not met. By adding an enforcement
mechanism for reserving network bandwidth, we can en-
sure that at least some of the traffic stays within its pre-
ferred region, perhaps at the expense of forcing other traffic
out of a better service region. The current capability to re-
serve network bandwidth is based on the reservation proto-
col, RSVP, which permits applications to request reserved
network bandwidth in an Internet Protocol (IP) network.

Specifically in this case, if the client has appropriate ca-
pability, the object gateway halves establish an RSVP medi-
ated path for conveying the object invocations between that
client and the designated object established using the stan-
dard CORBA binding mechanisms. Once established by the
gateway invocation of RSVP connection setup mechanisms,
the QuO delegate assures the use of the appropriate chan-
nel for meeting the QoS objective for the managed network
communication.

In our second example, the QoS property being managed
is not communication bandwidth, but rather dependability
through object replication strategies which can withstand
certain types of failures. The AQuA project [1] has used
QuO to develop an initial high-level API that allows appli-
cations to control object dependability using group commu-
nication and synchronization technology. This API hides
much of the complexity of the underlying group synchro-
nization and error recovery, and presents QoS abstractions
in a form natural to application developers.

There are two parts to the mechanism solution we seek
in order to support this enhanced QoS interface to clients.
First, we need to keep the various instances of the target re-
source/object synchronized with respect to changes so that
they each represent a potential source of servicing the next

5

request; and second, we need a way to transmit a new re-
quest to any available instance, so as to withstand the po-
tential failure of other instances without negatively affect-
ing the completion of the request. Group communication
and virtual synchrony (e.g., Ensemble, or any of a number
of other similar mechanisms) form the basis of the enforce-
ment mechanism used to support a higher degree of depend-
ability.

Within the group communication mechanism frame-
work, provision is made for a dynamically changeable
grouping of objects to remain synchronized. This is im-
plemented by having appropriate update messages go to the
entire group in the appropriate order, and by establishing a
group identity which can be used to reach any of the avail-
able instances, thereby providing the abstraction of a more
(or less) highly available single resource, depending on the
degree of replication. It is the function of the QuO object
gateway to allow the easy insertion of the group communi-
cation mechanisms needed to support this QoS enforcement
within the communication path between client and collec-
tion of object instances representing the dependable object.
In this second example, the specialized protocol is not an
RSVP controlled communication path, but rather a care-
fully managed virtual multicast (either network enabled or
through a series of point to point communications). In ei-
ther case, however, the specialized protocol is inserted at
the communication level (i.e., beyond the IIOP boundary)
in synchrony with the QoS objectives at the object interface
level.

Currently, we are establishing the gateway and mecha-
nism concept as a separate QuO component so as to achieve
the ORB independence mentioned above. In the future, it
may prove advantageous to integrate this functionality more
tightly with the ORB itself. In either case, the QoS enforce-
ment mechanisms need to be changeable and selected from
among a family of implementations, each with their own
distinctive footprint.

3.3. Functions of the Object Gateway

The primary function of the QuO Gateway is to allow
the easy and convenient insertion of QoS aware transport
layer protocols between distributed clients and servers. By
transport layer protocols we include not only traditional
protocols (e.g., IP/TCP) for moving data but also special-
ized protocols to support specific QoS enhanced data trans-
port mechanisms providing specific attributes in the areas
of real time performance, dependability and security. These
specialized protocols contribute various enhanced proper-
ties to the transport of message data, ranging from reserving
bandwidth capacity to ensure high priority, real time mes-
sage data traverses the network unimpeded by further delay
from other competing traffic, to organized group (multicast)

transport distribution to ensure synchronized parallel, re-
dundant transformation updates, to controlling which mes-
sages can or can’t get through and with or without proper
encoding to support overall security objectives.

In its CORBA instantiation, the QuO Gateway piggy-
backs on the existing IIOP (Interoperable Internet Opera-
tions Protocol) invocation/response transport mechanisms,
inserting additional protocols which manage QoS properties
as noted above. In effect, the QuO Gateway serves to man-
age enhanced IIOP transport interactions between CORBA
clients and objects. While transport level QoS is not equiv-
alent to end-to-end QoS, it does nonetheless address a sig-
nificant, and perhaps most critical, part of the end-to-end
problem. Another step in QoS management is to link the
transport level resource management provided by the QuO
gateway with other parts of the QuO framework to produce
the desired managed, adaptive and integrated behavior. We
are still distant from an integrated capability, needing first
to instantiate an effective common transport level QoS man-
agement capability which can individually support single
property QoS.

The functions of the QuO gateway fall into two distinct
categories: those that are standardly needed for the gen-
eral QuO gateway support independent of the property be-
ing managed; and those that are specific to the various QoS
property protocol mechanisms being inserted into the gen-
eral gateway structure. In the rest of this subsection we enu-
merate the general gateway functions supported. Examples
of specific property functions will be described later in the
sections on case studies of the AQuA dependability gateway
and the DIRM controlled throughput gateway.

The standard functions of the object gateway include the
following:

� (Approximate) transparent insertion in the IIOP stream
of QuO specific management functions (capable of
calling appropriate property specific protocols) on both
the client and server sides if needed. This involves in-
serting in the IIOP stream matching gateway halves
providing a “shadow” QoS transport server on the
client end, and a “shadow” QoS transport client on the
server end. In this way, to the client, the QuO gate-
way looks like an endpoint CORBA server, while to
the server, the other half of the QuO gateway looks like
an initiating CORBA client. The job of the gateway is
to transport the request/reply to its appropriate destina-
tions utilizing the appropriate path selection and mix of
QoS mechanisms.

� Request/Reply matching needed to coordinate the two
asynchronous activities

� Error handling, including system exceptions acting on
behalf of the ORB, as well as other CORBA based

6

redirection functionality such as “Cancel” and “Lo-
cate”.

� Standard Interfaces for inserting and substituting a
wide range of specialized transport level QoS mech-
anisms and transport level QoS handlers in support of
these mechanisms.

3.4. Architecture, Design, and Implementation of
the Object Gateway

The gateway shell provides basic gateway capabilities,
based on monitoring Internet Inter-ORB Protocol (IIOP) re-
quests. The gateway inserts itself into the inter-ORB com-
munications stream by terminating the IIOP session at the
client side and initiating a new one at the remote site. In be-
tween, it applies appropriate QoS measures depending on
the current contract region and available mechanisms and
resources. This gateway shell is suitable for use as the base
for constructing specialized QoS- property object gateways,
initially in isolation, but soon in combination.

A specific property object gateway is built by layering
the gateway shell on top of underlying QoS implementa-
tion mechanisms. For example, we layer the QuO object
gateway over QoSME to produce a RSVP gateway. The
gateway translates from IIOP to specific requests on the un-
derlying RSVP mechanisms. Similarly, we layer the gate-
way over Ensemble group communication to provide syn-
chronized message traffic among collections of replicated
objects. The gateway translates from the single object in-
vocation to the underlying group communication transport
paradigm. Figure 5 illustrates the general architecture of
the QuO object gateway shell, including the interaction of
its two “gateway halves”.

Figure 5. Object Gateway Shell Functional
Overview

To the “Client” ORB, the QuO Gateway looks like the
object. To the “Server” ORB, the QuO Gateway looks like
a client. The ends of the gateway are at minimum on the
same LAN as the Client/Object, and may be on the same
host. In certain configurations, there may be many gateway
instances on a LAN, and even many gateways on a host.
CORBA Objects are used to Control QuO Gateway halves

by allowing the gateway to be configured remotely, but do
not interfere with in-band communication.

DII and DSI are standard CORBA interfaces provided to
support dynamic invocation semantics, where the nature of
the parameters of the invocation/reply are not known un-
til runtime. We use them as the means of inserting our
QuO gateway proxies as object request relays, utilizing the
CORBA standard GIOP messages underlying the IIOP im-
plementation. IIOP Glue multiplexes and demultiplexes
GIOP messages to the gateway coordinator. The Gateway
Coordination module handles flow control and error detec-
tion, as well as path selection.

Figures 6 and 7 show the symmetry in the gateway shell
halves representing the client side gateway and the server
side gateway. Transport interactions between these halves
is governed by the appropriate mechanism for the specific
QoS property being managed by the gateway within the
QuO infrastructure.

Figure 6. Client-Side Gateway Shell Half in De-
tail

Figure 7. Server-Side Gateway Shell Half in
Detail

The Client-Side Interface produces a partially parsed
GIOP request to be transported which is bundled into a Call
Block and puts it on the RequestQueue for the specialized
transport. The Call Block is used for sequencing the trans-
port activities and for matching with an eventual reply. In
our current design, there is a separate thread per IIOP trans-
action, with the suspended processing thread maintained in
the Call Block.

The Server-Side Interface essentially does the inverse of
the Client-Side, starting from the transported GIOP request.
The DII interface sends a Request structure to the object

7

reference. The return values are bundled into the Call block
and put on the ReplyQueue for the specialized transport.
Reply messages are forwarded with very little change and
are largely opaque to the gateway.

If the transported call encounters an error, an Exception
is thrown in the Reply Code. These exceptions are clas-
sified as SystemExceptions, because the Gateway is log-
ically an extension of the ORB. Special threading restric-
tions are needed to maintain the order of arrival of requests,
which are important to some QoS mechanisms.

4. Case Studies

4.1. Case Study 1: Assured Bandwidth

The DIRM project is developing techniques for quality
assured bandwidth management for the QuO framework.
To do this, it needed several software components in addi-
tion to those provided already by QuO. The most important
of these are the following (also represented in Figure 8):

Figure 8. Managed Bandwidth Property Con-
figuration

RSVP Control Module The RSVP control module pro-
vides a CORBA interface to control bandwidth reser-
vations. It uses network management interfaces to
request RSVP sessions on behalf of DIRM applica-
tions. The DIRM project completed and tested an ini-
tial RSVP capability in September 1997, shortly before
the protocol’s official approval by the Internet Engi-
neering Task Force (IETF).

RSVP CORBA Object Gateway This is the generic QuO
gateway shell specifically augmented with a mech-
anism to provide standard CORBA communications
protocols with enhancements to utilize reserved band-
width transport, based on RSVP. Columbia Univer-
sity QoSME, interfaced to RSVP controlled paths, was
used as the transport layer between gateway halves.
QoSME was extended to include setting up RSVP

reservations from the socket level and to measure the
QoS for each message sent [4]].

RSVP Monitor The RSVP monitor (not shown in figure)
keeps track of the status of RSVP sessions in real-time.
This status information is exported to the QuO kernel
via QuO system conditions. These system conditions
are then available to QuO applications and contracts.

Collectively, these software components combined with
QuO concepts to achieve the construction of an “RSVP-
aware ORB.” This ORB, which consists of a commercial
off-the-shelf (COTS) ORB, composed with a QuO gateway
and appropriate control and feedback mechanisms, provides
a DOC environment enhanced with managed bandwidth ca-
pabilities.

The QuO Gateway for bandwidth management used
RSVP to reserve bandwidth between the client-side and
server-side gateways (see Figures 9 and 10). Several simul-

Figure 9. Using RSVP to Reserve Network
Bandwidth

Figure 10. Bandwidth Management Aware
Protocols in DIRM

taneous paths through the network are possible, each with
a different QoS. If a reserved bandwidth path was selected,
then the request and reply were sent over a TCP session
which had an RSVP reservation. Thus for long request or
reply messages, the delay for the message could be dramati-
cally reduced because the effective bandwidth for that mes-
sage would be greater going through the gateway, than com-
peting with best-effort traffic for limited bandwidth without
using the gateway.

The first implementation of the QuO RSVP Gateway
(July 98) used a static configuration for its bandwidth reser-
vations. When the client-side and server-side gateways
had both started up, they would reserve a fixed amount of
bandwidth for each ”well-known” port between them. The

8

RSVP API would maintain the RSVP session as long as
both gateways were alive. An RSVP flow-spec indicated the
amount of bandwidth, the burst size for a specific TCP ses-
sion (IP endpoints, protocol and port). CORBA calls from
several clients to several different servers could be multi-
plexed over the same reserved TCP session. There was no
attempt in this incarnation of the gateway to match the re-
sulting flow with the RSVP reservation. The natural TCP
flow control mechanism was used to regulate the session
throughput. Thus in this case, RSVP was used as a way to
give certain TCP sessions priority over other sessions, but
with an upper limit on bandwidth. As expected, when the
network was lightly loaded the RSVP reservation had little
or no effect on the reserved or best effort traffic, i.e., the
weighted fair queuing worked adequately as is.

Path selection was also static in the first QuO RSVP gate-
way implementation. We used a form of source routing by
storing the path to the destination server in the CORBA
object-key parameter. The request message traveled from
the client through client-side and server-side gateways to
the server. When the request arrived at a gateway, the
object-key field contained the location independent Interop-
erable Object Reference (IOR) for the next embedded com-
ponent. A CORBA IOR contains the server IP address and
port, and the object key for the remote object. Thus, the IOR
used by the client has the address and port for the client-side
gateway with the object-key having the stringified version
of the IOR to reference the server-side gateway. The IOR
used by the client was created by a program that first en-
capsulates the server IOR in the server-side gateway IOR,
second encapsulates the server-side gateway IOR inside the
client-side gateway IOR, and finally gives to the client the
client side gateway IOR to use for accessing the remote ob-
ject though the gateways. The disadvantage of this scheme
is the size of the IOR grows exponentially with each embed-
ded component, (because we used the stingified version of
the IOR instead of the RAW CDR encoding). However, the
advantage was that the gateways did not have to implement
any path selection algorithm.

4.2. Case Study 2: Dependability

4.2.1. Context

The AQuA project is providing dependability mechanisms
and policies for the QuO framework [1]. One of the major
goals for the AQuA project is to provide support for a wide
spectrum of dependable systems. The interposition of a
gateway supports the development of many different operat-
ing points trading off performance, dependability, security,
and survivability, in a highly portably manner. Specifically,
the AQuA gateway architecture supports choices across the
following interdependent dimensions:

� Active replication (all replicas process invocations and
send replies) vs. semi-active (all replicas process but
only one sends a reply) vs. passive (only one replica at
a time processes invocations).

� If multiple replicas generate the same request or reply,
when, where, and how (e.g., select first copy or major-
ity voting) a single copy is selected for delivery to each
destination.

� Whether the replicas of an object have aleaderor are
implemented symmetrically.

� How the messages implementing invocations or replies
are ordered and which object replicas receive them.

In the architecture depicted in Figure 11, an operating
point selected from the above dimensions is areplication
schemeand is implemented in one of several “handlers” in
the QuO gateway. The “IIOP glue,” on receiving a CORBA
IIOP message from the application object, hands this mes-
sage off to the “dispatcher” to be forwarded to the des-
tination object via group communication. The dispatcher
in turn selects the correct handler which will actually send
this message, depending on the replication scheme selected.
The object receiving the message has a similarly configured
QuO gateway whose handler and dispatcher will hand the
message back to the IIOP glue to be forwarded via CORBA
to the application.

Figure 11. Dependability Gateway Client-Side
Components

Because the details of the replication mechanisms are
implemented in the handlers transparently to the ORB, it
is easy to use and reuse different replication schemes across
different application objects. Currently, a client’s QuO con-
tract specifies high-level dependability requirements such as
number of host failures that must be survived. This is trans-
lated into a configuration involving the above dimensions,
as well as the number and location of the replicas, by the
Proteus dependability manager [12].

9

4.2.2. Group Communication Basics

The AQuA gateway, as used to help manage dependability,
is layered on top of a group communication service offering
virtual synchrony [15]. Such services provide delivery guar-
antees that enable a process to determine what messages
have been delivered to other processes in an asynchronous
environment in the presence of failures. Optionally, they
can guarantee that the messages are delivered in a certain
order. Using these properties, the handlers in an active repli-
cation scheme (for example) can guarantee that if all objects
in the system process their invocations in a deterministic
fashion, then all replicas of any given object will receive
the same invocation stream, so that their states will be kept
consistent [14]. In a group communication service, each
message is sent by only one process at a time in only one
direction to one or several other processes (one-to-one or
one-to-many message-passing). The AQuA handlers build
on top of this flexible support for two-way (request and re-
ply) object invocations between a replicated client group to
a replicated server group.

The AQuA gateway currently uses the Mae-
stro/Ensemble group communication service [6, 16].
A service offering similar semantics could be substituted
by using appropriate handlers.

4.2.3. An Example Dependability GW Configuration

An active replication scheme has been implemented, illus-
trating the use of the QuO dependability gateway. This
scheme involves three Ensemble process groups whose
members are the QuO gateways. Theclient (resp.server)
process group is used for coordination of the client (resp.
server) replicas, and only the client (resp. server) gateways
are members. Theconnectionprocess group is used to com-
municate between the client and the server, and all gateways
on both sides are members.

Figure 12 shows the steps used to send a client’s invo-
cation request to the server. “C-Rep1” (replica number 1
of the client group) and “S-Rep2” (replica number 2 of the
server group) are leaders of their respective groups. The
steps taken by the handlers in this scheme (described in de-
tail in [12]) involve point-to-point messages (step 3), mul-
ticast messages (steps 5 and 6), and pass-first-copy voting
(step 4). The reply path in this example is symmetric to the
request path.

5. Conclusions

5.1. Experience with the Object Gateways

We have demonstrated the concept that a generic object
gateway supporting different QoS properties can be built on

Figure 12. Steps for a CORBA request in Ex-
ample AQuA Configuration

a common platform, and in such a way that the strategies
for managing the transport level QoS mechanisms can be
substitutable. Experience to date with a bandwidth man-
agement module and a dependability module have shown
significant reuse for the common object gateway concept,
and a reimplementation now underway will provide even
more. We have not yet tried experiments with a combined
QoS property object gateway.

The DIRM Bandwidth Management Gateway has
proven effective in sustaining predictable network QoS de-
spite large fluctuations in competing traffic, using emerg-
ing RSVP protocols. These protocols are soon to be more
widely available, so demonstrating their applicability in an
application oriented software engineering context is an im-
portant step. We are continuing to work on developing the
system level control and utilization modules needed to make
a completely useful bandwidth managed capability.

The AQuA Dependability Gateway has proven very flex-
ible. The same code for a given handler runs on both the
client and the server side, and it is very modular. The code
for a given step above is typically 5–10 lines, and the han-
dler’s code is structured with nested blocks of code for each
step, bracketed by tests as to whether the replica is leader
or not, whether it is on the client or server side of an in-
vocation, and what step in the above protocol is currently
underway. Given a few such handlers as examples, we ex-
pect it to be relatively straightforward for a programmer to
create customized handlers from them.

Several problems where encountered in the first imple-
mentation of the common object gateway which are being
addressed by the second version. First, the gateways intro-
duced a substantial latency in the CORBA call. Some of the
latency was expected due to processing the request and re-
ply in the two additional gateway hops. But a large compo-
nent of the delay was due to the store and forward nature of
the gateway and limitations of CORBA IIOP protocol. For

10

IIOP 1.0, the whole message must be received at each em-
bedded component before it can be forwarded to the next.
This forwarding delay is not an issue when the messages
are small, such as at the IP layer, but CORBA messages
can be arbitrarily long, such as several megabytes. IIOP 1.1
(and beyond) allows for a ”cut through” by introducing a
GIOP fragment message. This new IIOP functionality per-
mits taking a long CORBA message and breaking it up into
several fragments which can be pipelined through the gate-
ways. Fragmentation can have a big impact on the latency
of long request and reply messages. Without fragmentation,
long messages have to be sent as one IIOP frame for which
the length must be know before the message can be started.
With fragmentation, partial messages can be transported be-
fore they are completely received, and messages from dif-
ferent clients can be interleaved on shared links. IIOP frag-
ments are currently becoming experimentally available as
part of IIOP 1.2 implementations.

A second problem was getting the alignment right for the
parameter list, if any of the gateway changes the length of
any IIOP fields. A CORBA call’s parameter list and result
are encoded in the IIOP request-body and reply-body fields.
These fields are opaque to the gateway, because their struc-
ture is defined in the IDL for the object interface, which the
gateway does not know. The message body is aligned based
on the type of the first argument in the parameter list. Since,
an interface can have an arbitrary first argument, the align-
ment of the IIOP 1.0 body can have arbitrary alignment.
The consequence is that if any of the IIOP message fields
are changed, they must maintain the 128 bit modulus of the
message body. Because the gateway changed the length of
the object key field at each hop, we had to be careful to
pad the generated IORs to keep the same 128 bit modulus
as the original remote-object IOR. A standardized CORBA
solution to this type of alignment problem is part of IIOP
version 1.3.

5.2. Related Work

The Eternal and Realize projects at U.C. Santa Bar-
bara are developing fault-tolerant and real-time CORBA-
compliant systems [10, 11], and are also involved in the
fault-tolerance standardization efforts of CORBA’s consor-
tium, the Object Management Group (OMG). Eternal and
Realize both use an Interceptor modeule which intercepts
an IIOP message and then redirects it to the subsystem to
provide replication. As such, their Interceptor is totally “be-
low” the ORB in its naming and implementation, in that it
supports complete client transparency and normally inter-
cepts a message before it leaves the client’s address space
(though it can do so on the server side if needed). This
provides better performance than AQuA’s use of the QuO
gateway, but at a cost of less flexibility and portability to

and interoperability with other operating systems.
The CORBA group communication service approach de-

scribed in [3] uses an explicit CORBA service to provide
fault tolerance; it is entirely “above” the ORB in both its
naming and implementation. As such, the concept of a
group is visible to the client program. The AQuA use of
the QuO gateway is “above” the ORB in terms of nam-
ing, because it uses the ORB to deliver the IIOP message
to the gateway by “pointing” the ORB proxy to the gate-
way. AQuA’s gateway is “below” the ORB in terms of im-
plementation, in the sense that its handlers are operating on
the level of abstraction of a marshalled IIOP message, not
an object and a request to one of its methods.

Electra and Orbix+Isis modify the ORB to make it aware
of multicast primitives and explicitly maintain an object
group membership [8].

The TAO project has developed a high-performance,
open source, real-time ORB [5, 13]. It does not have a flex-
ible and reusable component such as QuO’s gateway han-
dlers as part of it. However, it does have all the system
hooks — portable interceptors and pluggable transports —
required for interting such handlers, and in fact TAO has
more mature implementations of these than any CORBA
vendor. Ongoing collaboration is exploring the use of these
interception mechanisms with QuO’s gateway handlers (and
also the replication strategies provided by Eternal and Real-
ize). TAO researchers are very involved with the real-time
efforts of the OMG.

The Time-Triggered, Message-Triggered Objects project
[7] augments traditional CORBAservice methods(those
declared in CORBA IDL —message-triggeredones) with
time-triggered methods, which are activated when a sys-
tem’s real-time clock reaches specific points in time. It uses
Orbix’s filters mechanism, which is similar to what is being
standardized in the ongoing CORBA portable interceptors
effort.

5.3. Future Directions

In the future we plan to change the static path selection
with a more dynamic version based on the name resolu-
tion mechanisms found in CORBA. Instead of the object-
key containing the path to the remote object, instead it will
contain an object name and QoS properties. At each gate-
way object key will be given to a Path Selection Module
that will determine the best path forward. Path selection
could involve sending the call over a reserved bandwidth
TCP session or queuing it for later transmission. Each call
would resolve the name, so that calls to the same remote
object and QoS properties can actually take different paths
across the network.

We also plan to setup the bandwidth reservations dy-
namically, based on configuration commands from the re-

11

source management system. A management station will
monitor the gateways, and can add or remove reservations
to match the overall demand and external constraints. Thus,
the topology between gateways will be configurable, much
the same way as a Virtual Private Network (VPN) is config-
urable. Also, the path selection will pick the best path at the
moment, much the same way as routers route IP messages
in the Internet.

The dependability mechanisms which are part of the cur-
rent configuration already have many degrees of flexibility
as noted previously. A next step is to more rigorously eval-
uate and validate how these degrees of flexibility can com-
bine with each other to achieve and move between different
effective operating points. As they exist now, the mech-
anisms are largely heavy duty, and need to be selectively
used. Expanding the set with more light duty alternatives
will make it easier to introduce dependability into many
more configurations.

Another next step is to experiment with the combined
effect of a dependability gateway over bandwidth managed
network communication to prove their compatibility, and to
improve performance of the complex dependability proto-
cols over wide area configurations.

Acknowledgements

This work is sponsored by the U.S. Defense Advanced
Research Projects Agency under Contracts No. N66001-
96-C08529 monitored by NRaD, and No. F30602-96-C-
0315 monitored by US Air Force Research Laboratory as
part of the Quorum program managed by Gary Koob. We
would also like to acknowledge the contribution to this
work by participating colleagues in the Distributed Com-
puting Groups at BBN (Mark Berman, Partha Pal, Ro-
drigo Vanegas, Frank Bronzo), at the University of Illinois
Champagne/Urbana (Bill Sanders, Michel Cukier, Chetan
Sabnis,and Jennifer Ren), at Columbia University (Yechiam
Yemini and Danillo Florissi) and at Washington Univer-
sity in St. Louis (Doug Schmidt, Irfan Pyarali and Carlos
O’Ryan).

References

[1] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H.
Sanders, D. E. Bakken, M. Berman, D. A. Karr, and R. E.
Schantz. AQuA: an adaptive architecture that provides de-
pendable distributed objects. InProc. of the 17th IEEE Sym-
posium on Reliable Distributed Systems, pages 245–253,
Oct. 1998.

[2] DIRM project technical overview, 1998. <http:
//www.dist-systems.bbn.com/projects/
DIRM/> .

[3] P. Felber, B. Garbinato, and R. Guerraoui. The design
of a CORBA group communication service. InProceed-
ings of the 15th Symposium on Reliable Distributed Systems
(SRDS-15), pages 150–159, Niagara-on-the-Lake, Canada,
Oct. 1996.

[4] P. Florissi. QoSME: Quality of service management envi-
ronment, 1998. <http://www.cs.columbia.edu/
dcc/qosockets/> .

[5] A. Gokhale, I. Pyarali, C. O’Ryan, D. Schmidt, V. Kachroo,
A. Arulanthu, and N. Wang. Design considerations and per-
formance optimizations for real-time ORBs. InProc. of the
Fifth USENIX Conference on OO Technologies and Systems
(COOTS ’99), May 1999. to appear.

[6] M. Hayden. The Ensemble System. PhD thesis, Cornell
University, Ithaca, NY, Jan. 1998. Technical Report TR98-
1662.

[7] K. H. Kim. Object structures for real-time systems and sim-
ulators.IEEE Computer, pages 62–70, Aug. 1997.

[8] S. Landis and S. Maffeis. Building reliable distributed sys-
tems with corba. Theory and Practice of Object Systems,
3(1):31–43, 1997.

[9] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken.
Specifying and measuring quality of service in distributed
object systems. InProc. of the First International Sympo-
sium on Object-Oriented Real-Time Distributed Computing
(ISORC ’98), Apr. 1998.

[10] P. M. Melliar-Smith, L. E. Moser, V. Kalogeraki, and
P. Narasimhan. The realize middleware for replication and
resource management. InProc. of the IFIP International
Conference on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware ’98), pages 123–138, Sept.
1998.

[11] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Con-
sistent object replication in the Eternal system.Theory and
Practice of Object Systems, 4(2):81–92, 1998.

[12] C. Sabnis, M. Cukier, J. Ren, P. Rubel, W. H. Sanders, D. E.
Bakken, and D. A. Karr. Proteus: A flexible infrastructure to
implement fault tolerance in AQuA. InProc. of Seventh IFIP
International Working Conference on Dependable Comput-
ing for Critical Applications, Jan. 1999.

[13] D. Schmidt, D. Levine, and S. Mungee. The design of the
TAO real-time object request broker.Computer Communi-
cations, 21(4), Apr. 1998.

[14] F. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial.ACM Computing Sur-
veys, 22(4):299–319, Dec. 1990.

[15] R. Van Renesse, K. P. Birman, and S. Maffeis. Horus, a
flexible group communication system.Commun. ACM, Apr.
1996. See also other articles in this special issue on group
communications.

[16] A. Vaysburd. Building Reliable Interoperable Distributed
Objects with the Maestro Tools. PhD thesis, Cornell Univer-
sity, May 1998. Technical Report TR98-1678.

[17] L. Zhang et al. RSVP: a new resource protocol.IEEE Net-
work, 7(6):8–18, Sept. 1993.

[18] J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architectural
support for quality of service for CORBA objects.Theory
and Practice of Object Systems, 3(1):55–73, Apr. 1997.

12

