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Abstract— This paper investigates the problem of routing flows with
Quality-of-Service (QoS) requirements through one or more networks,
when the information available for making such routing decisions is inac-
curate. Inaccuracy in the information used in computing QoS routes, e.g.,
network state such as link and node metrics, arises naturally in a number of
different environments that are reviewed in the paper. Our goal is to deter-
mine the impact of such inaccuracy on the ability of the path selection pro-
cess to successfully identify paths with adequate available resources. In par-
ticular, we focus on devising algorithms capable of selecting path(s) that are
most likely to successfully accommodate the desired QoS, in the presence of
uncertain network state information. For the purpose of our analysis, we
assume that this uncertainty is expressed through probabilistic models, and
we briefly discuss sample cases that can give rise to such models. We estab-
lish that the impact of uncertainty is minimal for flows with only bandwidth
requirements, but that it makes path selection intractable when end-to-end
delay requirements are considered. For this latter case, we provide efficient
solutions for special cases of interest and develop useful heuristics.
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I. INTRODUCTION

A. Motivations and Results Overview

QoS routing is one of the tools available to network operators
to improve their ability to accommodate flows which expect cer-
tain QoS guarantees from the network. Specifically, QoS rout-
ing enables a network operator to identify, for every new flow,
a path through the network, that has sufficient resources to meet
the flow’s requirements (see [1], [2] for examples). These re-
quirements are typically in the form of bandwidth or end-to-end
delay guarantees, so that identifying a path capable of meeting
them implies some knowledge of the availability of resources
throughout the network.

For purposes of clarity, we assume in the paper an environ-
ment where a source node is presented with a request to estab-
lish a new flow with specific QoS requirements, e.g., bandwidth
or end-to-end delay, and is responsible for finding a suitable path
to the destination. In other words, we consider a (loose) source
routing model1 as in [1], [4]. In addition, we follow the link
state model of [1], [2], [4], where a network topology database
is available that keeps state information about nodes and links in
the network. This information is then used by the path selection
process, to identify paths with sufficient resources to accommo-
date the requirements of new flows.

It should be noted that in addition to just finding a path with
sufficient resources, there are other criteria that a network oper-
ator may want to consider. For example, it may want to optimize
network utilization, carried load, number of flows successfully
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routed, etc. Each of these criteria can influence the outcome of
the path selection process, e.g., the network may identify a path
capable of satisfying the requirement of the flow, but decide not
to use it because it is too expensive in terms of the amount of re-
sources being consumed. This paper does not attempt to address
all these issues. Instead, we focus on the aspect of findinga path
capable of satisfying the requirements of a new flow. However,
we believe that such criteria can often be either handled after a
path has been selected or directly incorporated into the model
we develop in the paper for path selection. We briefly touch on
this aspect in Section V.

When considering the task of finding a path capable of ac-
commodating a new request, it is important to realize that this
ability is very much dependent on the accuracy of the informa-
tion specifying the availability of network resources (see [5], [6]
for examples of this sensitivity). Unfortunately, there are many
reasons for why this information may be inaccurate, and we re-
view several of them later in this section. Our main concern is,
therefore, with the impact of inaccurate state information in the
topology database used by path selection. As is to be expected,
this impact depends on the kind of QoS requirements expressed
by a new flow. In particular, it seems intuitive that so called bot-
tleneckrequirements such as bandwidth, i.e., a certain amount
of bandwidth is required on each link, would react differently
to inaccuracy than additiverequirements such as end-to-end de-
lay. As a result, we investigate separately the cases of flows with
bandwidth requirements and of flows which request a bound on
their end-to-end delay.

For both, our focus is on finding “good” paths, i.e., paths
with enough resources to accommodate new requests, despite
the possibility that the state information in the topology database
may not accurately reflect the actual availability of resources. In
other words, the criterion we use to assess the goodness of a
path is the likelihood it will have sufficient resources to accom-
modate a new flow. In that context, we deem the best possible
path to be the one most likelyto have the necessary resources.
In order to asses such path qualities, a source node needs to
associate some stochastic behavior, namely probability distribu-
tion functions (p.d.f.’s) to a performance metric associated with
the various network components. However, it is important to
understand that this does not imply that p.d.f.’s are necessarily
advertisedby the network nodes, as part of the link-state pro-
tocol; rather, a source node may constructthe p.d.f.’s, based on
the (standard) advertised parameters and some knowledge of the
characteristics and possible range of their inaccuracy.

For flows with bandwidth requirements, we show that under
certain assumptions on how inaccuracy in network state infor-
mation is represented, this best possible path can be computed
using relatively standard algorithms. In the case of flows which
request end-to-end delay bounds, the situation is unfortunately



not as favorable, and we establish a number of intractability re-
sults when it comes to computing the path most likely to meet a
given end-to-end delay bound. As a result, we then investigate
several approximations, special cases of interest, and heuristics.
We do so in the context of two different models for the provision
of end-to-end delay bounds, and develop separate solutions for
each.

First, we focus on a model that assumes the “rate-based” ap-
proach of [7] for providing end-to-end delay bounds to flows.
This model essentially amounts to coupling delay and band-
width guarantees, i.e., providing a bound on the queuing delay
experienced by the packets of a flow is accomplished by ensur-
ing a minimum service rate to the flow. Such a model imposes
additional constraints on network nodes as it mandates the use
of schedulers capable of enforcing relatively strict rate guaran-
tees. However, it also means that rate (bandwidth) is the main
network resource whose state needs to be considered when com-
puting a path. As we shall see, this simplifies, to some extent,
the path computation process, so that tractable solutions can be
provided in a number of interesting cases.

Next, we extend our investigation to a second model, a
“delay-based” model, where end-to-end delay bounds are now
guaranteed by concatenating local delay guarantees provided at
each node/link on the path of a flow. This model is consistent
with the service and signaling specifications of [1], [8], [9]. The
reliance on local delay guarantees for providing end-to-end de-
lay bounds affects the nature of the network state information
that needs to be provided, as it must now include the local delay
guarantees that each node/link can provide. This in turn affects
the path computation process, and as we will again see, makes
it typically more difficult to find the best feasible path than with
the rate-based model.

B. Sources of Inaccuracy in Network State Information

As mentioned earlier, QoS routing relies on state information
specifying resource availability at network nodes and links, and
uses it to find paths with enough free resources to accommodate
new flows. In turn, the successful routing of new flows together
with the termination of existing ones, induce constant changes
in the amount of resources available. These must then be com-
municated back to QoS routing to ensure it makes its decision
based on correct information. Unfortunately, communicating
such changes in a timely fashion is expensive and, at times, not
even feasible [6], [10]. As a result, changes in resources avail-
ability are usually communicated either infrequently, e.g., only
when they are big enough, or imprecisely, e.g., after aggregating
network states.

Such limitations can introduce substantial inaccuracy in the
information used by path selection to identify good paths
through the network, and, as stated before, this is the problem
we want to address in the paper. However, before we proceed
with our investigation, we briefly review some of the underly-
ing parameters that determine the extent of inaccuracy we can
expect in network state information. There are two main com-
ponents to the cost of timely distribution of changes in network
state: the number of entities generating such updates, and the
frequency at which each entity generates updates.

Limiting the number of entities (nodes and links) generating
updates on their state, is a generic scalability issue that is not
specific to QoS routing. Indeed, as network sizes grow, scalabil-
ity quickly becomes a generic concern that has been the source
of the many hierarchical schemes in use by network protocols.
Two good examples are provided by the OSPF [11] and PNNI
[1] protocols. OSPF supports a two-level hierarchy, with differ-
ent granularity in terms of topology and routing information for
each level. In particular, detailed information about topology
and routes is available within an area, while only much coarser
information is available about the “backbone” and remote areas.
The PNNI protocol generalizes this concept to an arbitrary num-
ber of levels, and defines a progressive aggregation procedure
that combines multiple networks into single “nodes” as they get
more remote.

These various aggregation steps abstract multiple physical
nodes and links into a much smaller number of logical entities.
As a result, information about the state of individual nodes and
links is often lost. For example, the PNNI standard outlines sev-
eral possible approaches for aggregating an entire network into a
single node, where the metrics, e.g., available bandwidth, asso-
ciated with the aggregate node are typically obtained by “aver-
aging” corresponding individual metrics. This loss of accuracy
in state information can have a substantial impact on the path
selection process. For example, the knowledge that a remote
network, or set of networks, has an amountB of available band-
width, must be interpreted only as an indication that if a flow
requests that amount, it is likely to be accepted. This is because
the quantity B is now only a summary of the amount of band-
width actually available on the many different paths across this
remote network.

For path selection, the main consequence of this loss of accu-
racy in network state information, is that it now needs to con-
sider not only the amount of resources that are available, but
also the level of certainty with which these resources are indeed
available. For example, a link which guarantees10 Mbps of
available bandwidth may be more desirable than one which ad-
vertises20 Mbps based on some average computed over mul-
tiple different paths. Again, our goal is to identify the path
most likely to accommodate the requirements expressed by a
new flow.

The second contributor to the cost of maintaining accurate
state information is the frequency of state changes, and there-
fore updates. Specifically, each advertisement of a state change
consumes both network bandwidth on all the links over which it
is sent, and processing cycles at all nodes where it is received.
Keeping this overhead to a minimum is, therefore, desirable, if
not mandatory. There are many different methods that can be
used to achieve such a goal (see [5], [6] for in-depth investiga-
tions of this issue and its impact on QoS routing), but they typi-
cally involve waiting either for a large enough change or until a
minimum amount of time has passed.

As a result, the actual state of a remote node or link can drift
away from the value known to other nodes, without them be-
ing aware of it. The size of the gap between the actual state
and its last advertised value clearly depends on the specifics of
the mechanisms used to control distribution of state information.



For example, a mechanism that relies on thresholds, i.e., an up-
date is triggered if the difference between the current value and
the last advertised one is greater than, say 50%, implies some
maximum value for this gap. This information can then be used
during the path selection phase to assess the likelihood that a
given amount of bandwidth is available. For example, [12] and
[13] illustrate how this can be used together with the path se-
lection method described in Section II of this paper. However,
there are other cases where estimating the value of this gap is
more difficult. In particular, as illustrated in [6], timer-based
mechanisms can induce more arbitrary inaccuracies, which will
require different approaches for selecting good paths.

C. Scope of the Paper and Relation to Previous Works

As was outlined above, there are many possible sources of in-
accuracy in network state information, which all translate into
different models and levels of inaccuracy. In addition, parame-
ters such as network topology, traffic load, etc., all contribute to
defining a broad problem space and, therefore, solution space.
As a result, providing a comprehensive set of solutions for com-
puting good paths in the presence of inaccuracy is a daunting
task that goes well beyond the scope of a single paper. Devising
solutions that explicitly address specific cases is certainly of im-
portance, and some initial results have been reported in [5], [6],
[12] for the case of the OSPF protocol. However, this is not the
focus of this paper.

Instead, the goal of this paper is to explore fundamental as-
pects associated with the impact of information inaccuracy in
the context of QoS routing. In particular, we concentrate on the
formal specification of the problem, the derivation of basic com-
plexity results, and the investigation and validation (or invali-
dation) of a representative sample of algorithmic approaches.
Clearly, in the context of such an open-ended investigation, the
focus is less on providing specific justifications for the assump-
tions underlying each scenario, and more on acquiring some ba-
sic understanding of the issues at stake. We feel that the latter is
an important first step in exploring this complex problem. One
that can then help better assess possible trade-offs between per-
formance and complexity, and provide a useful guide for future
investigations, both at the conceptual (e.g., [14], [15]) as well
as the applied level (e.g., [5], [6], [12]). This is even more true
given the lack of previous work on the specific topic of this pa-
per.

The most relevant body of work to our problem of QoS rout-
ing in the presence of inaccurate information, is a set of papers
aimed at exploring state aggregation issues and their impact on
routing performance in large networks. [16] provided an initial
investigation of the problem of hierarchical routing in large net-
works, and focused on the problem of cluster design to ensure
maximum reduction of routing table sizes without substantial in-
creases in path length (hop count). [17] focused on the problem
of state aggregation in the context of link state routing proto-
cols whose goal was to compute shortest paths. The problem of
state aggregation in the context of QoS routing was described
in [18], with specific aggregation methods being described and
evaluated in [19], [20]. Finally, [21]–[25] developed a number
of fundamental results for “good” aggregation techniques that

minimize inaccuracy in network state information, while allow-
ing substantial reductions in the amount of state data.

However, despite their relevance to our problem, none of
these prior works truly addressed the problem of evaluating the
fundamental impact of inaccuracy in state information, on the
performance of QoS routing. This is the focus of this paper, and
the rest of our investigation is structured as follows. In Sec-
tion II, we investigate the problem of computing good paths
for flows with bandwidth requirements. We show how a sim-
ple adaptation of a standard shortest path algorithm can be used
to compute “optimal” (most likely to be feasible) paths. Sec-
tions III and IV address the case of flows that require end-to-
end delay bounds. Section III deals with the previously men-
tioned rate-based model, while Section IV considers the case of
the delay-based model. Because of the greater complexity of
the delay-based model, we investigate a number of heuristics.
In particular, we develop an approximation specifically targeted
to the case of hierarchical network models, one which exploits
the specific characteristics of the type of inaccuracies they in-
troduce. The findings of the paper are briefly summarized in
Section V, which also points to possible extensions. A key algo-
rithmic technique used in the paper is formulated and validated
in an Appendix. Several technical proofs and details are omitted
and can be found in a technical report [26].

II. FLOWS WITH BANDWIDTH REQUIREMENTS

In this section, we address the problem of computing paths
for flows which have specific bandwidth requirements, when
the information available at the source node of such a flow only
consists of an inaccurate estimate of the actual amount of band-
width available at other nodes/networks, represented by a graph
G(V;E). Specifically, the information known at the source node
regarding the available bandwidth on each link l 2 E, is in the
form of quantities pl(x), where pl(x) is the probability that link
l can accommodate a flow which requires x units of bandwidth.

In the case of a link state protocol, this distribution could be
derived using the last received value for the advertised available
bandwidth on the link, together with some information on the
possible excursions around this value based on the triggering
mechanism in use, e.g., as outlined in [12] for threshold based
triggers. The basic premise is that the link state information can-
not be taken at face value, and a probabilistic model is used to
capture the fact that a range of values is instead possible. As
mentioned earlier, our goal in this paper is not so much to as-
sume and justify a specific distribution pl(x) and investigate its
impact on the selection of paths for flows with bandwidth re-
quirements. Instead, we wish to gain some general understand-
ing of the added complexity imposed on the path selection by the
need to deal with imprecise link bandwidth information. This
understanding can then drive the exploration of specific cases,
and the construction of distributions which are not only realistic
models to represent state inaccuracy in real networks, but also
enable tractable solutions to the QoS routing problem (see [13]
for a detailed experimental investigation of this issue, and its use
in the context of the methods proposed in this paper).

In this context, for a new flow with bandwidth requirementw,
we wish to find the path that is most likely to be able to accom-



modate this new request. For that purpose, we let pl = pl(w)

be the probability of “success” on link l, i.e., the probability that
w units of bandwidth are indeed available on link l. For a path
p, �l2ppl corresponds then to the probability of success of the
path, i.e., the probability that at least the amount of requested
bandwidth is available on all the links of the path.2 The prob-
lem we are trying to solve can then be expressed as follows.
Problem B: For a given bandwidth requirement w, find a path
p� such that, for any path p:

�l2p�pl(w) � �l2ppl(w):
Next, we show how this problem has a rather straightforward

solution, using a standard Most Reliable Path (MRP)algorithm.
Such an algorithm consists of computing shortest paths for prop-
erly selected link weights, i.e., weights which are the negative
logarithm of the original link weights. This way, the multipli-
cation of problem B is transformed into the usual additive path
length computation. In other words, we have:
Algorithm (MRP):
1. Let wl = � log pl, for all l 2 E.
2. Find the shortest path according to the metric fwlg.

In [26] we formally establish that the MRPalgorithm solves
problem B, i.e., it yields a path which has the maximum prob-
ability of satisfying the requested bandwidth w. This essen-
tially says that inaccuracies in the actual bandwidth available
on links/nodes can be dealt with relatively simply, using a short-
est path algorithm. As we shall see in the next sections, this
property is not shared when dealing with end-to-end delay guar-
antees.

III. FLOWS WITH END-TO-END DELAY REQUIREMENTS:
ADVERTISING OF RATE GUARANTEES

In this section and in the next one, we consider the case of
flows which require an end-to-end delay bound for their packets.
The goal of path selection is then to identify a path that can both
accommodate the traffic generated by the source, and guarantee
that the end-to-end delays experienced by packets from the flow
remain below a given value. This “guarantee” can be strict (hard
delay bound) or loose (bound on the average delay). Such differ-
ences clearly affect resource allocation and scheduling support,
but do not have a significant impact on the path selection prob-
lem that we consider as they typically translate into constraints
of a similar form. As a result and for purposes of simplicity,
we limit our attention to the case where delay guarantees are in
terms of a hard upper bound.

This section considers the rate-basedservice model of [7]
for providing end-to-end delay bounds. As mentioned earlier,
this model requires the use of specific schedulers at all network
nodes, e.g., a Weighted Fair Queuing scheduler [27] or a Rate
Controlled Earliest Deadline First scheduler [28]. Under the as-
sumption that such schedulers are in use, the end-to-end delay
bound d(p) that the network can guarantee on an n-hop path p
is of the following form:

d(p) =
�

r
+

P
l2p cl

r
+
X
l2p

dl; (1)

2Note that we make here the assumption that the corresponding random vari-
ables on different links are independent of each other; such an assumption is
made in all the models considered in this paper.

where � is the size of the flow’s burst, cl is a fixed quantity at
link l, typically the maximum packet length for the flow, dl is a
static delay value, typically the link propagation delay, and r is
the minimal rate that can be guaranteed to the flow at each link
along the path. In the rest of the paper, we assume that cl � c,
e.g., it is the flow’s maximum packet size, which is true for many
scheduling policies (e.g., [27], [28]). Thus, for an n-hop path p,
we have

d(p) =
�n

r
+
X
l2p

dl

where �n = � + cn.

As can be seen from the above expression, a major benefit of
the rate-based model is that the dependency of the end-to-end
delay bound on network resources is only in terms of available
bandwidth on each link, i.e., the rate r. As a result, the link met-
ric of most significance in this setting is as before the available
bandwidth. In that context, we assume again a network repre-
sented by a graphG(V;E), and denoteN = jV j,M = jEj. The
metrics (state) associated with each link l consist of a fixed prop-
agation delay dl, and a residual rate available to new flows. As
propagation delays are not subject to (significant) fluctuations,
the residual rate is the only quantity that is deemed variable and,
therefore, subject to some inaccuracy.

As in the case of flows with bandwidth requirements, we cap-
ture this inaccuracy by assuming that the residual rate is a ran-
dom variable with p.d.f. pl(r) corresponding to the probability
of being able to allocate rate r on link l. As before, this distribu-
tion would likely be based on the last advertised value and some
estimate of the possible variations around it. Again, our purpose
is not to study or justify the use of a specific distribution, but to
gain some understanding of how uncertainty in the amount of
available bandwidth affects our ability to compute paths which
satisfy end-to-end delay bounds.

Note that in cases where the source of uncertainty in state
information is state aggregation, propagation delays are aggre-
gated as well, and hence also carry some level of uncertainty.
However, it is expected that the range of variations for these
quantities will be much less than that of advertised residual
rates. As a result, assuming that only rates are not known pre-
cisely remains a reasonable model even in that setting. More-
over, as can be seen from equation (1), the overall effect of im-
precision in propagation delays can be expected to be smaller
than for rates, since errors on different links can compensate for
each other.

Before we return to assessing the impact of rate inaccuracy
on our ability to select a good path capable of meeting a given
end-to-end delay bound, we note that the relative weight of the
two delay terms in equation (1) can greatly vary based on path
length, traffic characteristics, and rate allocation. But even in the
case of long haul connections, e.g., cross country, the impact of
the rate-dependent term need not be negligible. For example, a
video connection with a burst size of 32kbytes, a packet size of
1.5kbytes, an allocated rate of 2Mbits/sec, and taking 10 hops
to cross the continental US, corresponds to a worst case queuing
delay of 188msec. This is to be compared to a coast-to-coast
propagation delay of about 20msec.



A. Intractability

Given the source and destination nodes of a new flow, a max-
imum delay requirement D for the new flow, and a path p, we
define �D(p) as the probability that d(p) � D. We denote
the problem of finding a path that maximizes the probability of
satisfying the end-to-end delay requirement D of a flow in this
setting as Problem R-D. Referring to equation (1), we note that,
despite the fact that as with flows with bandwidth requirements
the rate r is the only random variable, substantial differences ex-
ist between the two problems. Not only does the rate r appear
in a denominator position, but the additive nature of the propa-
gation delay term also affects the nature of the problem. As we
shall see next, these differences drastically affect the impact of
inaccuracy when it comes to computing paths capable of ensur-
ing delay guarantees. Specifically, we establish that the presence
of inaccuracies in residual rates, as we have just defined them,
makes the path selection problem intractable. This is stated in
the next proposition.

Proposition III.1: Problem R-D is NP-complete.
Proof: Through a reduction to a shortest weight-constrained
path problem, which is known to be NP-complete [29]. Given a
graph with two positive values, al and bl, associated with each
link l, and a positive bound B, the shortest weight-constrained
path problem is to find a path that minimizes the sum of the al’s,
with the constraint that the sum of the bl’s does not exceed B.
The transformation into problem R-D is done as follows. Set
dl  bl, and �n  � + cn � 1 for all n (the requirement that
�n � 1 for all n is easily enforced by properly selecting � and
c). The rate at each link can be either infinite or 1

B+1
, with the

following probabilities:

Probfrl =1g = e�al

Probfrl =
1

B + 1
g = 1� e�al :

The delay constraint is chosen as D = B. It is easy to verify

that a path p that satisfies the constraint D must have r = 1

and
P

l2p dl � B. Thus, a path that is a solution for problem
R-D, i.e., that maximizes the probability of not exceeding the
delay constraint, is also a path that minimizes

P
l2p al while

obeying the bound
P

l2p bl � B, i.e., that solves the shortest
weight-constrained path problem. Therefore, problem R-D is
NP-hard. Since it can be transformed (polynomially) into a de-
cision problem that is in NP, problem R-D is NP-complete. 2

In the next section, we show that while the original problem
is intractable, a pseudo-polynomial solution can be constructed.

B. Pseudo-Polynomial Solution

Assume that dl takes integer values. A pseudo-polynomial
solution for problem R-D can then be constructed as follows.
1. For each 1 � d � D, for each 1 � n < N :

(a) r  �n
D�d

.
(b) Among paths p with at most n hops and for whichP
l2p dl = d, find one that maximizes �l2ppl(r).

2. Among the O(ND) 3 chosen paths, choose the one with
maximal probability of success.

3Following standard terminology, we say that a function f(n) is O(g(n))
(respectively, 
(g(n))) whenever there exists a constant c such that jf(n)j �

Using a standard dynamic programming approach, step
(1.(b)) of the above algorithm can be performed in O(DNM)

steps. Thus, the overall complexity of the above algorithm is
O(D2N2M).

While the availability of a pseudo-polynomial solution is cer-
tainly a desirable feature, it is often not adequate in practice due
to the typically large value of the termD. As a result, it is natural
to ask if narrowing the problem by making additional assump-
tions on the distribution of the residual rate, might yield tractable
(polynomial) solutions. As mentioned earlier, this is useful not
only because certain distributions may be good candidates for
capturing the impact of different sources of inaccuracy, but also
because this sampling of the problem space can provide a better
understanding of the source of the additional complexity intro-
duced by inaccurate state information.

C. Special Cases

C.1 Deterministic Case

This first case is little more than a “sanity check” to verify that
the absence of inaccuracy indeed yields a tractable solution. For
that purpose, we assume that each link has a deterministic rate
(rl) associated with it. In that case, problem R-D is equivalent
to the Quickest Path problem [30], for which a simple solution
of O(K(N logN +M)) is known, where K is the number of
different values for rl (thus K � M ). The solution amounts to
running a shortest path algorithm for each possible value of r. In
[31] it is shown how complexity can be substantially reduced by
resorting to �-accurate solutions, and how the path selection can
be refined in order to incorporate network optimization criteria.

C.2 Identical dl’s

This next case attempts to simplify the path selection problem
by making the additive component of the end-to-end delay, i.e.,
the propagation delay, be essentially a function of the hop count.
For that purpose, we assume that all propagation delays are iden-
tical, i.e., dl � d. From a practical point of view, this may be
an appropriate assumption in a local environment, where prop-
agation will be nearly insignificant so that a single value could
then be used. In this case, the following algorithm provides a
solution.
1. For each 1 � n � N :
� Find a path of at most n hops that maximizes pl(r), where
r = �n

D�nd
. (This step is carried through an MRPalgorithm, as

described in Section II, which computes shortest paths through
a Bellman-Fordshortest path scheme [32].)
2. Among the O(N) selected paths, choose the one with maxi-
mal probability.

The complexity of this algorithm is simply O(N 2M).

C.3 Identical P.d.f.’s

In this next case, we now explore the effect of a more re-
strictive model for the rate component of the end-to-end delay.
Specifically, we assume that the same distribution function char-
acterizes the residual rate on all links, i.e., pl(r) � p(r). This

c � jg(n)j (respectively, jf(n)j � c � jg(n)j) for all values of n � 0. If f(n) is
both O(g(n)) and 
(g(n)), we say that f(n) is �(g(n)).



may be an appropriate assumption for an homogeneous environ-
ment, or one for which little is known regarding the actual state
of any link so that a common distribution is one possible repre-
sentation of their state. It can then be seen that among paths

of n-hops, an optimal one maximizes p

�
�n

D�
P

dl

�
, which

amounts to minimizing �n

D�
P

dl
, i.e., minimizing

P
dl. Thus, a

solution can be found through a single execution of a Bellman-
Ford shortest path algorithm.
Remark: A tractable solution exists in this case even when cl 6�

c. We then need to minimize
�+
P

l2p
cl

D�
P

l2p
dl

, which can be done

through algorithm min-PR(see the Appendix).

C.4 Exponential Distributions

This last special case is one which may be of more practical
interest. It yields a tractable exact solution, while maintaining
the main characteristics of the original problem, i.e., it preserves
most of the generality of equation (1) and its choice for a distri-
bution of available link bandwidth is one that corresponds to an
intuitively reasonable model. Specifically, we consider the case
where an exponential distribution is used to model the distribu-
tion of residual rate on all links, i.e., pl(r) = e��lr.

Such a model may be appropriate in the context of link state
protocols that advertise a single value to characterize the avail-
able bandwidth on each link. This value could be chosen to
represent the actual available bandwidth at a given instant in
time, which would then fluctuate as new flows get established
and older ones are released. Those fluctuations may not map
exactly onto an exponential distribution, but it nevertheless rep-
resents a reasonable choice which captures the expected behav-
ior of small bandwidth requests being likely to be accepted and
larger ones becoming increasingly unlikely. Furthermore, nodes
could also use this exponential model as a trigger for advertising
updated values, when it is deemed that the previous exponential
distribution is not adequate anymore.

Under the assumption of an exponential distribution, the
probability of success over an n-hop path p, is found to be sim-
ply given by:

�D(p) = �l2pe

��l�n

D�

P
j2p

dj
= e

��n

P
l2p

�l

D�

P
l2p

dl

Thus, an n-hop path that maximizes �D(p) is one that min-

imizes

P
l2p

�l

D�
P

l2p
dl

. Hence a solution to problem R-D can be

obtained through algorithm min-PR(see the Appendix). This
result is summarized in the following statement.4

Proposition III.2: When residual rates are exponentially dis-
tributed, an optimal solution to problem R-D can be found
through algorithm min-PR, resulting in O(N 2M(log(N � D �
maxl2E �l
minl2E �l

))) steps. 2

Extensions of the above result are possible. For example, in
[26] we show that Proposition III.2 holds also in a more gen-
eral case of a shifted exponential distribution, i.e., each link can
guarantee some minimal, non-zero value of residual rate.

4For simplicity of exposition, the result is stated under the assumption that dl
and D take integer values.

The above result not withstanding, it may, however, still be
desirable to determine if tractable and near-optimal solutions
can be constructed, that do not require specific assumptions on
the distribution of the available rate on each link. Investigating
this aspect is the topic of the next section.

D. An�-Optimal Solution

In the previous section, we have identified a number of special
cases for which simple solutions exist, and which have helped us
gain some understanding into the impact of state inaccuracy on
the complexity of path selection. In this section, we show that
simple solutions can also be found, if one is willing to abandon
the requirement of strict optimality. Specifically, we describe an
approach that yields paths that are arbitrary close to the optimal,
i.e., �-optimal. This approach is based on quantizing the metrics
used in selecting a path.

We consider a value pmin > 0, which is the minimal allowed
success probability on any link (i.e., we make the assumption
that a probability of less than, say, pmin = 0:1, results in a
prohibitively high risk of failure for the resulting path). In other
words, we assume that pl(r) is either higher than pmin or else
equal to 0; without loss of generality, we shall further assume
that pl(r) is always greater than pmin. Furthermore, we assume
that the rates rl on link l can only takeKl different values, where
Kl is a fixed (and reasonably small) number andK =

P
l2EKl.

For example, this would be the case when using one of the class-
based or quantized triggering policies of [6] to determine when
to advertise new rate values.

An �-optimal solution can then be constructed based on the
following quantization of the residual rate p.d.f.’s on each link.
Let wl(r) = � log pl(r). Each wl(r) is rounded up based on a
quantization step �, yielding a new value denoted as ~wl(r). Let-
ting I = d� log pmin

�
e, we note that ~wl(r) 2 f0; �; 2�; : : : ; I�g.

The quantization factor � is chosen as � =
log 1

1��

N
. Note that

� is a function of the level of inaccuracy one is willing to toler-
ate. We point out that we describe here a general procedure that
works irrespective of the number K of different values; further
optimization of this procedure is possible by accounting for the
impact of K.

The algorithm for selecting a path based on these quantized
probabilities is then as follows.
Algorithm QP:
1. For all K possible values of r:
For all 1 � n � N :
For all 0 � m � n:
For all 0 � i � I :

(a) Find a path p(n;m; i) of at most n hops and for whichP
l2p(n;m;i) ~wl(r) � m � i � �, that is shortest w.r.t. the metric

fdlg.
(b) If �n

r
+
P

l2p(n;m;i) dl < D then compute�l2p(n;m;i)pl(r),
the (real) probability of success of p(n;m; i) for the considered
value of r; otherwise, the probability of success of p(n;m; i)
for the considered value of r is 0.
2. Among the paths identified in the previous step, choose the
one with the highest probability of success.

Theorem III.1: With the assumptions specified in this sec-
tion, algorithm QP is an �-optimal solution to problem R-D,



namely: the ratio between the probability of success of a path
chosen by algorithm QP to that of an optimal path is bounded
(from below) by 1 � O(�). Its complexity is O(N 3M 1

�
), i.e.,

polynomial in the input size N;M , and the level of inaccuracy
1
�
. 2

The proof can be found in [26].

IV. FLOWS WITH END-TO-END DELAY REQUIREMENTS:
ADVERTISING OF DELAY GUARANTEES

This section deals with the alternate delay-basedmodel out-
lined in Section I for providing end-to-end delay guarantees. In
this model, end-to-end delay bounds are provided through the
concatenation of local delay bounds at each node. As a result,
the state information that a node now needs to advertise is not
as in the previous section in the form of a residual rate or band-
width, but instead in terms of its ability to provide specific delay
guarantees. It is then this local delay information, which we
will consider subject to some inaccuracy, and our problem can
be stated as follows.
Given: A maximum delay requirement D for a new flow be-
tween given source and destination nodes, a network represented
by a graph G(V;E), N = jV j, M = jEj, p.d.f.’s pl(d) for all
l 2 E, such that pl(d) is the probability that (for the new flow)
link l will introduce a delay of at most d units, i.e., that dl � d.
As with the rate model, an important issue is again the iden-
tification of appropriate distributions for the local link delays.
However, as before, our focus is not so much on justifying a
particular distribution and deriving a specific solution for it. In
that respect, much of the discussions of Section III apply here
as well, and we proceed along essentially the same lines in our
investigation of the delay-based model.

Specifically, for a path p, let �D(p) be the probability thatP
l2p dl � D, and define the path selection problem as:

Problem D: Find a path p� such that, for any path p: �D(p�) �
�D(p).

In other words, find the path p� that is most likely to accom-
modate the new flow and provide it with an end-to-end delay
guarantee less than or equal to D. Next, we establish that, as
with the rate-based model, this problem is intractable.

A. Intractability of ProblemD

Consider first the (simpler) problem of determining whether,
for a given path p and value �, �D(p) � �. Call it Problem
P(�).

Lemma IV.1:Problem P(�) is NP-hard.
Proof: Consider an instance of the Kth largest subset problem
(see [29]). Given a finite set A, a size s(a) 2 Z+ for each
a 2 A, positive integers K and B, the problem is to determine
whether there are K or more distinct subsets A0 � A for which
the sum of the sizes of the elements in A0 does not exceed B.
The Kth largest subset problem is known to be NP-hard, and
we will transform it into an instance of problem P(�) in the fol-
lowing manner. The elements of A are ordered arbitrarily to
constitute a path p, in which each a 2 A uniquely corresponds
to a link in p. The delay da of a link a 2 p takes the values 0
and s(a), each with probability of 0:5. The delay requirement
for path p is chosen as D = B, and the probability bound is

chosen as � = K
2jAj

. Then, it is easy to see that �D(p) � � iff
the answer to the Kth largest subset problem is affirmative. We
thus conclude that problem P(�) is NP-hard. 2

Corollary IV.1: Problem D is NP-hard.
Proof: Consider an instance of problem P(�). Construct a net-
work G, composed of only two parallel paths: the first is path
p (of problem P(�)), the second is a single link, which takes 0
delay with probability �� � (where � is the input probability of
problem P(�) and � is a sufficiently small positive number), and
delay D+1 with probability 1� �+ �. The answer to problem
P(�) is affirmative iff path p is chosen when solving problem D.
2

Suppose, that in an attempt to override the intractability ob-
stacle, we would be satisfied with a path that is “reasonably
good”, albeit not necessarily optimal, e.g., a path p for which
�D(p) � �min, where �min is some (large enough) positive
number. Unfortunately, even this relaxed version is intractable.
Indeed, a solution for the relaxed version could be transformed
into a solution for problem D, through a binary search on the
values of �min between 0 and 1, whose complexity is polyno-
mial in the problem size (the details can be found in [26]).

Given the intractability of (even very simple instances of)
problem D, we will resort to approximations and heuristics.
However, we first turn our attention to some special cases to
see if some simplifications are possible when considering a less
general problem. The investigation of such special cases often
provides insight into what might be good heuristics for the gen-
eral problem.

B. Special Cases

B.1 Identical P.d.f.’s

The first special case we consider is that of identical p.d.f.’s,
i.e., we assume that pl(d) � p(d) for all l 2 E. In this case, it is
easy to see that any minimal hop path is an optimal solution to
problem D.
Remark: Unfortunately, the above does not hold even when we
“mildly” break symmetry. For example, in [26] we show that
when link delays are uniformly distributed on (�l � �l; �l + �l)

for link l 2 E, where �l � �, but �l may take more than one
value, a minimal hop path may not be optimal.

B.2 Tight Constraints

In this special case, we attempt to simplify the computation
of �D(p) by forcing each and everylink of a path to provide a
low delay, in order for the path p to have a non-zero probabil-
ity of satisfying the delay constraint. For example, this could
be representative of an environment where optimization of path
selection is triggered only when resources become scarce, and
accommodating new requests requires such tight optimization.
Specifically, we assume here that link delays are uniformly dis-
tributed, and we will consider two cases. In the first, “propor-
tional window” case, link delays are uniformly distributed on
(�l � (1 � �=2); �l � (1 + �=2)), whereas in the second, “con-
stant window” case, link delays are uniformly distributed on
(�l �

�
2
; �l +

�
2
). In both cases we assume that the end-to-end

delay bound is tight, so that, on any path, the delay on any link
cannot be equal to its upper bound.



Consider first the case of proportional windows. The assump-
tion of tight constraints transforms here into the following: for
each path p, there is some d, 0 < d < � � minl2p �l, such that
D �

P
l2p �l � (1 � �=2) = d. In other words, the total delay

margin d on path p is such that no link can afford to contribute
its worst case delay. Under such a constraint, it is possible to
obtain a simple explicit expression for the probability �D(p).

Lemma IV.2:In the case of tight constraints and proportional
windows, the probability that the delay of an n-hop path p does
not exceed D is given by

�D(p) =
1

n!

�
d

�

�n
�

1

�l2p�l
:

2

The above lemma allows us to then state the following corol-
lary.

Corollary IV.2: In the case of tight constraints and propor-
tional windows, among n-hop paths, the optimal one maximizes

�
d

�

�n
�

1

�l2p�l
=

(D �
P

l2p �l(1�
�
2
))n

�l2p�l
�
1

�n
(2)
2

Unfortunately, while the additional assumption of tight con-
straints helped simplify the computation of the probability that
a given path meets the end-to-end delay requirement, solving
the path optimization (implied by (2) for proportional windows)
seems to be still intractable. However, if � �minl2E �l is a rea-
sonably small number, a pseudo-polynomial algorithm of ac-
ceptable complexity can be formulated, as described in [26].

Consider now the case of constant windows, i.e., the delays
dl are uniformly distributed over (�l� �

2
; �l+

�
2
). Following the

same lines as above, it can be shown that the success probability
for an n-hop path p is given by

1

n!

�
d

�

�n
: (3)

Therefore, the optimal path among those having at most n
hops maximizes d, i.e., minimizes

P
l2p �l, and hence it is a

shortest path w.r.t. the mean values �l. The global solution can
then be identified by comparing the probabilities of the n-hop-
constrained shortest paths for all n, 1 � n � N . We summarize
the above discussion in the following statement.

Proposition IV.1: In the case of tight constraints and constant
windows, an optimal path can be found by identifying, for each
value of n in the range 1 : : :N , an n-hop path that is shortest
w.r.t. the mean values �l, and choosing among these N paths
the one that maximizes (3). The complexity of the solution is
O(NM). 2

While we have been able to develop tractable solutions for
some cases of tight constraints, it should be noted that these
cases are relatively limited, i.e., resources are scarce on all links.
Therefore, even if the optimization of path selection is clearly
beneficial in such cases, there are many other scenarios for
which it is also important to be able to identify good paths. As
a result, it remains desirable to provide a general and tractable
solution capable of handling a wide variety of load conditions.
This we do in the next section, where we attempt to develop
some heuristics to tackle the general problem D. We focus on
heuristics for which a tractable and efficient solution can even-
tually be constructed.

C. Split-Constraints Heuristics

In this section, we investigate a simplification of the general
problem, which is based on the idea of splitting a priori the end-
to-end constraint D among the links, i.e., transform a global
constraint into local constraints. In the next few sections, we
review several such heuristics and determine if and when they
yield practical solutions. The first heuristics serve as building
blocks for the ultimate one, which, as shall be shown, suits well
the case where state inaccuracy is primarily caused by state ag-
gregation.

C.1 Split-Constraints Heuristic - Version 1 (S1)

In the first version S1 of the split-constraint heuristic, the de-
lay split is performed so that the probability of meeting the (lo-
cal) constraint is equal along all links in the path. The path
selection problem is then to find the local constraint value that
yields the best path. In other words, given a path p and some
value 0 < p � 1, we split D into Dl’s, l 2 p, such that, for each
link l 2 p:

pl(Dl) = p; or pl(Dl) = 1 (4)
(the second possibility is introduced in order to deal with links
for which only a deterministic value is available), and5:

X
l2p

Dl = D: (5)

We further assume that the delays dl on link l are uniformly
distributed on (
l; 
l+ �l), and that, for simplicity, D, 
l, and �l
take integer values.

It is then easy to see that:
1. There is a solution iff

P
l2p 
l < D (thus: D �

P
l2p 
l �

1).
2. If D >

P
l2p(
l + �l), then the probability of success in p

is equal to 1.
Thus, we first check if the shortest distance in the network

G, w.r.t. f
lg, is no more than D (otherwise, there is no solu-
tion), and if the shortest distance w.r.t. f
l + �lg is more than
D (otherwise, a shortest path p w.r.t. f
l + �lg is optimal, with
�D(p) = 1). Accordingly, we assume from now on that there is
a path p0, such that: X

l2p0


l < D (6)

and that, for all paths p:

X
l2p

(
l + �l) > D: (7)

It can then be verified that expressions (4)–(7) have the fol-
lowing unique solution:

Dl = (D �
X
j2p


j)
�lP
j2p �j

+ 
l; (8)

for which:

pl(Dl) =
D �

P
j2p 
jP

j2p �j
: (9)

Thus, for a path p with n hops:

5In equation (5) we ignore the possibility that
P

l2p
Dl < D with probabil-

ity 1; as shall become clear subsequently, this is done without loss of generality.



�D(p) �

 
D �

P
j2p 
jP

j2p �j

!n

: (10)

Therefore, heuristic S1 selects the path in the following way.
Heuristic S1:
1. If the shortest distance in the network G, w.r.t. f
lg, is more
than D, then stop (there is no solution).
2. If the shortest distance, w.r.t. f
l + �lg, is less than D, then
stop (a shortest path p w.r.t. f
l+ �lg is optimal, with �D(p) =
1).
3. For 1 � n � N , run algorithm min-CTW(n)(see the Ap-
pendix), in order to find an n-hop walk p(n)6 that minimizes
the following expression: P

j2p �j

D �
P

j2p 
j :
(11)

4. Choose the path ~p that maximizes (10) among all p(n)’s.7

In view of the complexity discussion presented in the Ap-
pendix, the complexity of heuristic S1 is:

O(N2M � (log(N �D �max
l2E

�l))):

The solution ~p generated by heuristics S1 has a number of
“nice” properties which we briefly review.
1. It is feasible, i.e., for all l 2 ~p, 
l � Dl � 
l + �l.
2. For �l = 0, we have Dl = 
l = dl, i.e., a deterministic link
is assigned its deterministic delay.
3. In a network with identical p.d.f.’s we have, for an n-hop
path: Dl(n) =

D
n

, i.e., a symmetric assignment. Therefore, ~p is
a minimum hop path, i.e., the (real) optimal path.
4. More generally: expression (10) grows withD and decreases
with

P

l,
P

�l and n. This means that we prefer paths with
fewer hops (n), higher slack (D�

P

l), and smaller uncertainty

(
P

�l), which seems like an intuitive thing to do.
Despite the above benefits, heuristic S1 also has shortcom-

ings, in particular when links are heterogeneous. Indeed, in that
case, it may be a bad idea to impose the same success prob-
ability on all links. For example, consider a path composed
of two links, with delays uniformly distributed on (0:5; 1:5)

and (50; 150), respectively, and assume a delay constraint of
D = 51. The probability of success on the second link can
only be small, and heuristic S1 will thus also force a small prob-
ability of success on the first link. This is inefficient as there are
other partitions of D into D1 and D2 that result in much higher
success probability for the path. However, there is a special case
for which this drawback is not present, and we discuss it next.

Assume that �i � �. Then, the probability of success over an
n hop path p is �

D �
P

j2p 
j

n�

�n
; (12)

and the partition is

Dl =
D �

P
j2p 
j

n
+ 
l (13)

which can be shown to also be the best possible a priori par-
tition, that maximizes the success probability of path p (this

6As explained in the Appendix, p(n) may contain loops, thus it is a “walk”
and not necessarily a (simple, i.e. loopless) “path”.
7As explained in the Appendix, although p(n) may contain loops for some

values of n, ~p is a (simple) path.

assertion is formally established in [14], under a more general
setting). In that case, the optimal path can be found simply by
running N shortest-path algorithms. Thus, for the case of iden-
tical �l’s, we derive the following heuristic, denoted as SI for
Split constraint heuristics with Identical �l’s.
Heuristic SI:
1. If the shortest distance in the network G, w.r.t. f
lg, is more
than D, then stop (there is no solution).
2. If the shortest distance, w.r.t. f
l + �g, is less than D, then
stop (a shortest path p w.r.t. f
l + �g is optimal, with �D(p) =
1).
3. For all n, 1 � n < N , find an n-hop path that is shortest
w.r.t. f
jg.
4. Choose the best, among the O(N) selected paths, either ac-
cording to expression (12), or by exact computation of the path
probability of success (if such a computation, involving an N -
stage convolution, is reasonably tractable).

Heuristic SI has the following desirable properties.
1. The desirable properties of S1.
2. Optimality of the split ofD into Dl’s, along any chosen path.
3. In the case of tight constraints, and when the choice among
the O(N) selected paths is done according to an exact compu-
tation, the chosen path is optimal.
4. Noting that step (3) can be done through a Bellman-Fordal-
gorithm, we conclude that the complexity is simply O(N �M).

In [26] we present a heuristic that attempts to generalize the
above result, i.e., obtain the above optimality property (2) also
when the �l’s are not identical. Unfortunately, while we are able
to develop a simple procedure to pick the best delay split for
any given path, this does not extend to a simple (tractable) path
selection procedure.8

In the next section, we design one last split-constraints heuris-
tic that not only leverages the above findings, but also incorpo-
rates information on the overall structure of the network. Specif-
ically, we assume hierarchical network structure as in the PNNI
protocol [1], where each layer in the hierarchy represents an ad-
ditional level of aggregation of network/link state information.

C.2 Applying SI in a Hierarchical network model (SIH)

As mentioned earlier, it is often the case that networks are
organized according to some hierarchy, which determines how
network state information is to be aggregated. Knowledge of
this underlying hierarchy can provide useful guidelines when
devising heuristics to accommodate the loss of information that
aggregation entails. However, before investigating such a possi-
bility, we proceed to first describe more precisely the character-
istics of a hierarchical network model.

As before, the network or set of networks across which flows
need to be routed is represented by a graph G(V;E), where V
is now the set of layer 1 nodes, and E is the set of physical
links interconnecting them. G(V;E) will be referred as the ac-
tual network. Layer 1 nodes are clustered to form layer 2 nodes,
which are in turn clustered into layer 3 nodes etc., up to the last,
say L-th, layer. Nodes of the same layer i, which are clustered

8However, in [14] it is shown that, by imposing a convexity assumption related
to the p.d.f.’s, an �-optimal path selection procedure of polynomial complexity
can be constructed.
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Fig. 1. Example of Hierarchical Network

into the same (i+ 1)-layer node, are said to belong to the same
peer group[1]. Layer-i nodes that form a layer-(i + 1) node
are called its children, and the upper layer node is called their
parent. An ancestorof a node is either its parent or an ances-
tor’s parent. We assume that each peer group is composed of at
most m nodes of the lower layer, where m is a fixed(reasonably
small) number. Since jV j = �(mL), we conclude that the num-
ber of layers L is O(log jV j). For each layer 1 node i, the above
hierarchical procedure derives a corresponding aggregated rep-
resentation of the network, which will be referred as the image
(of the network G(V;E)) at nodei.

The above terminology is illustrated in Figure 1. The
“squares” correspond to layer 1 nodes, whereas the “clouds”
represent layer 2 and layer 3 nodes. The nodes and links drawn
with full lines correspond to the network image at any of the
layer 1 nodes located at the upper-left part of the figure. Ac-
cordingly, the dashed nodes and links correspond to the compo-
nents that are invisible at those nodes. In this example we have
m = 4, L = 3 and jV j = 32.

Associated with each layer-i node, say v(i), are a set of num-
bers, that aggregate the state and metrics information of the
layer-1 actual network components of which v(i) is the corre-
sponding ancestor. The way by which this metric aggregation is
performed is out of the scope of this paper (see, e.g., [18] and
references therein for typical examples). Nevertheless, the fol-
lowing general observations can be made, independently of the
precise method of metric aggregation:

H1 The amount of aggregated information, and thus its impre-
cision, grows with the layer index. Usually, at each layer the
aggregation process encapsulates �(m2) information into an
O(m) (or even an O(1)) database.

H2 Some aggregated values grow with the layer index. For ex-
ample, the delay associated with a layer i node aggregates the
delay over entire paths at the lower, i� 1’st, layer.

H3 A link interconnecting two nodes of a layer i, say u(i) and
v(i), represents some set S of actual links that interconnect the
corresponding actual nodes, aggregated by u(i) and v(i). The
metric associated with link (u(i); v(i)) combines the metric as-
sociated with each of the two end-nodes, together with an ag-
gregation of the metric of the links in the set S. For example,
the delay associated with (u(i); v(i)) combines the aggregated
delay associated with u(i), together with the aggregated delay

of the links in S. It should be noted that, in general, aggregation
is a complex process, that introduces dependencies between link
metrics not only across layers but also within the same (higher)
layer. However, accounting for such dependencies during the
path selection process is a difficult, if not impossible task. Fur-
thermore, assuming that aggregation is successful, as it should,
at properly ordering link metrics in each level, its impact on the
hierarchical routing heuristic we describe next should be rela-
tively small.

Requests are placed to path selection processes at source
(layer 1) nodes. The information available to a path selection
process at a node i corresponds to the image of the network at
that node. Considering a specific request at some node i, we
denote by M the number of links in the image of the network at
i; similarly, we denote by N the maximal number of nodes on
a (simple, loopless) path between source and destination on the
image of the network at that node. Since a path for a flow is com-
posed of up to m nodes at each of the L layers, we conclude that
N = O(m � log jV j) = O(log jV j), i.e., on the network’s image
the maximal size of a path grows logarithmically with the size
of the actual network. Similarly,M = O(m2 �L) = O(log jV j).

As an example, consider again Figure 1. Suppose that a re-
quest is placed at one of the (layer 1) nodes drawn with full lines
at the upper left part of the figure. It is easy to verify that any
path to the destination, on the image of the network at the source
node, is composed of at most four nodes of layer 1, two nodes
of layer 2 and two nodes of layer 3, i.e., N = 8. The network
image consists of five links between layer 1 nodes, three links
between layer 2 nodes and three links between layer 3 nodes,
i.e., M = 11.

The aggregation process induced by such a hierarchical model
can be used to justify a number of assumptions regarding the
advertised network state, which can help formulate heuristics
to deal with our path selection problem. Specifically, we can
assume that the parameters that characterize network “links” at
each layer have the following properties, where for ease of ex-
position, we assume that link delays dl are uniformly distributed
in(
l; 
l + �l):
� At each layer i, all �l’s are identical, and denoted by �(i).
Justification: the actual value is likely to be heavily based on the
level of aggregation implied by l, i.e., on l’s layer.
� For a link l in layer i and for a path p wholly in layer i � 1,

l = �(

P
j2p 
j).

Justification: a single link at layer i amounts to crossing a whole
peer group of layer i� 1. (See observation H2 above.)
� The �l of layer i is 
(m) larger than that of layer i� 1.
Justification: the aggregation process encapsulates �(m2) in-
formation into an O(m) database. (See observation H1 above.)

In view of the above observations, we formulate heuristic SIH
on the basis that links in a higher layer have greater weight than
those of lower layers. Hence, it is preferable to start with them
when attempting to select good paths. This heuristic is embod-
ied in the following algorithm which, due to space constraints,
is only described informally here (the reader is referred to [26]
for a formal description).

Since a given layer only plays a minor role in the performance
of the global path as compared to the next higher layer, the path
will be constructed top-down, i.e., we first choose the path suffix



which corresponds to the last layer, and then proceed sequen-
tially to the lower layers. However, we do let lower layers affect
to some extent the choice of higher layer paths. In order to allow
such feedback, at each layer i we do not limit ourselves to a sin-
gle path, but rather choose several, say K, layer-i paths. Then,
when moving to the i� 1-st layer, we will consider each of the
K layer-i paths and identify a corresponding layer-(i� 1)-path.
Then, by comparing theK possibilities, obtained by concatenat-
ing each layer-i path with its corresponding layer-(i � 1) path,
we identify the best solution for the i-th layer, among the K

layer-i paths. We then continue the recursion with layer i� 1.
It remains to determine the rule according to which paths are

evaluated and chosen, which we do next. At each layer iwe con-
sider a delay bound D(i), which corresponds to what is “left”
from the original value D after having consumed part of it at
the upper layers (the precise computation of D(i) appears in
[26]). Thus, at layer i, paths will be selected so as to maxi-
mize the probability of success assuming an optimal partition
of D(i) into link constraints Dl along the path. Suppose first
that K = 1, i.e., at each layer we only identify the “best” path.
Since at each layer all �l’s are equal, it follows from the dis-
cussion on heuristic SI (Section IV-C.1) that the path selection
should be done in the following way. We identify the shortest
n hop path with respect to f
lg, for each possible number of
hops n; the best path is chosen among these shortest paths so
as to maximize the approximated probability of success given
by (12). Accordingly, for a value K > 1, we find the K short-
est paths for each hop number n, and then choose the best K
(according to (12)) among these paths.

The full details can be found in [26]. We mention here that,
for K = 1, the complexity of heuristic SIH is O(m �M), which
compares well with O(N logN + M), i.e., the complexity of
a regular shortest-path algorithm run on the topology visible to
the source; for K > 1, the complexity is O(K �m3 �M), which
is still reasonable, as the hierarchical representation should be
designed with a small value of m.

In [26] the potential efficiency of the heuristic is discussed.
Since the discussion is based on the detailed specification of the
algorithm, we will confine ourselves here to a few important ob-
servations. For K = 1, SIH has all the desirable properties of
SI. Higher values ofK can be expected to improve the quality of
the solution, at the expense of increasing the complexity. How-
ever, in [26] it is demonstrated that, typically, the lower layers
indeed have only a minor effect on the path, thus a small value of
K, even K = 1, should usually suffice. In [26] we also discuss
other, more complex, variations of the algorithm.

V. CONCLUSION

In this paper, we have investigated the impact on the path se-
lection process for flows which require QoS guarantees, of inac-
curacies in the available network state and metrics information.
These inaccuracies can have many sources such as the need to
limit the rate at which state updates are distributed, the aggre-
gation of state information to ensure scalability, or in general
the use of generic state representations that do not account for
the specific details of a node/network internal structure. Our fo-
cus was on gaining some basic understanding into the impact of
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such inaccuracy on our ability to select good paths, i.e., paths
likely to have sufficient resources, for flows with bandwidth re-
quirements and end-to-end delay guarantees.

We showed that in the case of flows with only bandwidth re-
quirements, the impact of inaccuracies is relatively minimal, in
that a good path could be identified based on an algorithm which
was essentially a shortest path algorithm. Unfortunately, the
same could not be said for flows with end-to-end delay guar-
antees, for which we found that inaccuracies had a major impact
on the complexity of the path selection process, that typically
became intractable.

We then proceeded to study this latter case further for two
different models, namely a rate-based model and a delay-based
model. We showed that for the case of a rate-based model, the
problem is intractable. However, we identified a number of spe-
cial cases of practical interest, for which tractable solutions ex-
ist. We note that the derivation of some of these solutions (pre-
sented in the Appendix) is in itself a contribution of this paper.
In addition, we showed that by introducing metrics quantization,
near-optimal solutions can be constructed at a reasonable cost in
terms of complexity. For the delay-based model, we also estab-
lished intractability and then investigated a number of heuristics
that involved splitting the end-to-end constraints into local con-
straints. Using these heuristics, we developed an approach that
provides a solution of acceptable complexity for the case where
the source of inaccuracies is the aggregation process that occurs
in hierarchically interconnected networks.

A summary of the paper’s results is shown in Figure 2, and
we hope that they will foster additional works in what we feel is
an important area. Some follow-on studies are reported in [5],
[6], [12], [13], [14], [15].

Several aspects clearly require further investigation, and we
proceed to name a few major ones. One aspect is identifying
probability distributions that can realistically capture the inaccu-
racy in state information. The exponential distribution is an at-
tractive candidate because it is an intuitively reasonable model,
and one which also yields practical solutions. However, as illus-
trated in [6], state inaccuracies can be of many different forms
based, for example, on the trigger mechanisms used for state
updates (see [13] for an experimental investigation of possible
distributions in the case of connections with bandwidth require-
ments). As a result, we do not expect that a single model will
be adequate for all environments. This wide range of possible
scenarios was indeed one of the primary motivations for seeking
some basic understanding of the problem as carried out in this



paper. Another aspect is the incorporation of network optimiza-
tion criteria within the path selection process, e.g., network uti-
lization, carried load, number of flows successfully routed, etc.
Here, we note that one possible approach for incorporating such
criteria into our model, is to appropriately “distort” the p.d.f.’s
used to account for state inaccuracy. For example, if network
optimization requires to discourage the use of a link, its related
p.d.f. can be (artificially) changed so as to manifest lower suc-
cess probabilities. While this seems a plausible and promising
approach, understanding the appropriate level of distortion re-
quired to comply with a given criteria, is clearly an issue that
calls for further investigation. Finally, another important aspect
is an extension to multicast routing, and some initial, related re-
sults can be found in [15].
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[7] S. Shenker, C. Partridge, and R. Guérin, “Specification of guaranteed qual-
ity of service,” Request For Comments (Proposed Standard) RFC 2212,
Internet Engineering Task Force, September 1997.

[8] S. Sathaye, “ATM Forum Traffic Management Specification Version 4.0,”
ATM Forum 95-0013, December 1995.

[9] P. Samudra, “ATM User-Network Interface (UNI) Signalling Specification
Version 4.0,” ATM Forum 95-1434, December 1995.
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APPENDIX

PATH OPTIMIZATION WITH RATIONAL OBJECTIVE

FUNCTIONS

Several times in this paper, we face the need to solve a path
optimization problem with a rational objective function of the
following form.
Problem min-PR: Given a graph G(V;E) with a distinguished
pair of source and destination nodes, an integer B, and, for all
l 2 E, a number al > 0 and an integer bl > 0.9 Denote by
P+ the set of (simple, loopless) paths between the source and
the destination, for which

P
bl < B, i.e., P+ = fpj

P
l2p bl <

Bg. Find a path p� 2 P+, that minimizes

P
l2p

al

B�
P

l2p
bl

.

Problem min-PR resembles a class of combinatorial opti-
mization problems, broadly known as “Minimum Cost-to-Time
ratio problems (min-CT)” (see, e.g., [33] and the references
therein), which can be generally stated as follows.
Problem min-CT: Given a graph G(V;E), for all l 2 E, two
number xl and yl, such that xl > 0 on all l and, on any path
(alternatively, cycle) p,

P
l2p yl > 0 holds. Among all (simple)

paths p between a distinguished pair of source and destination

9We note that the results that follow hold also when B and bl are non-integers,
with a slight modification of the time complexity.



nodes (alternatively, all cycles p), find a path (alternatively, cy-

cle) p� that minimizes

P
l2p

xlP
l2p

yl
.

In [34], a polynomial algorithm was presented for the corre-
sponding min-CT cycleoptimization problem. The algorithm
depends on both the number of inputs (i.e., on the size of the
graph) and on a logarithmic term of the maximum size of an
input value. Later, in [35] a general approach was described
for solving minimum ratio problems, which, as a special case,
yields a strongly polynomial algorithm (i.e., that depends on
only the number of inputs but not on their size) for the min-
CT cycleoptimization problem. In [36] it was shown that, in
general, the corresponding min-CT pathoptimization problem
is NP-complete.

The above intractability result might indicate that our problem
min-PR is intractable since we also attempt to optimize paths.
However, the following discussion will show the opposite. We
begin by noting that the intractability of (the path version of)
problem min-CT stems from the requirement to limit the search
on simple paths. If the solution is allowed to contain loops,
then, as shall be demonstrated, the problem becomes tractable.
Following common terminology, we shall call a path that may
contain loops a walk. As a first step, then, we replace problem
min-CT with a corresponding walk-optimization problem min-
CTW. The key point in our approach is to note that the solution
of problem min-PR is necessarily a (loopless) path, even when
the search is conducted on the broader domain of walks. This
fact will be formally established subsequently.

A second problem that we encounter when trying to solve
problem min-PR through a solution to problem min-CTW, is
that the latter assumes that the denominator of the objective
function is positive on all paths/walks. Indeed, the problem
does not make sense if the denominator takes a negative value;
in terms of the various problems analyzed in the paper (i.e.,
those that boil down to a min-PR-type problem), a negative de-
nominator corresponds to a path on which the end-to-end delay
bound is violated with probability 1. Thus, one might suspect
that problem min-PR would not be solved through a solution
of problem min-CTW, unless the search is somehow limited to
only paths/walks with positive denominators, which seems to
be an intractable task. However, as we show below, it turns out
that the basic solution to problem min-CTW operates correctly,
even if its search includes forbidden paths/walks with negative
denominators.

We now turn to a formal description of the problem, its solu-
tion and the corresponding correctness proof.

Given a graph G(V;E), with a distinguished pair of source
and destination nodes, and, for all l 2 E, two numbers xl > 0

and yl (note that yl may be negative). Denote by W+ the set
of walks w between the source and the destination, for whichP

yl � 0, i.e., W+ = fwj
P

l2w yl > 0g. For a walk w 2

W+, denote F (w) =

P
l2w

xlP
l2w

yl
.

Problem min-CTW: Find a walk w� 2 W+, between the
source and the destination, of at most N � 1 hops, such that,
for all w 2 W+, F (w�) � F (w).

For ease of presentation, we consider also problem min-

CTW(n), which is a restriction of problem min-CTW on walks
of at most n hops. We proceed with a solution to this last prob-
lem.
Algorithm min-CTW(n):
1. If the shortest distance of n-hop walks between the source
and the destination according to the metric f�ylg is nonnegative
(i.e., no n-hop walk inW+) then �(n) 1 and Stop.
2. L minl2E xl

maxl2E n�jylj
, H  maxl2E n�xl

minl2E jylj
.

3. � L+H
2

.
4. For all l 2 E: �xl  xl � �yl.
5. Among walks of n hops between the source and the destina-
tion, find a shortest walk (possibly containing loops) w accord-
ing to the metric �xl, and denote its length by �.10

6. If � < 0 then H  �.
7. If � > 0 then L �.
8. If � 6= 0 then go to step (3), else (� = 0):

(a) w(n) w.
(b) �(n) �.
(c) Stop.
Note that the returned values are �(n) and, whenever �(n) <
1, also w(n).

Lemma A.1:Algorithm min-CTW(n)solves problem min-
CTW(n). Its complexity is

O(n �M � log(n �
maxl2E xl

minl2E xl
�
maxl2E yl

minl2E yl
)):

Proof: First, note that for a walk w 62 fW+g, we have, for any
� > 0, X

l2w

�xl =
X
l2w

xl � �
X
l2w

yl > 0;

also, it is clear from the algorithm that � > 0 always holds.
Consider some hop-count n. Accordingly, all the following

references to walks are to n-hop walks between the source and
the destination. Step (1) identifies the case in which there is no
n-hop walk in W+. Therefore, assume that W+ is nonempty,
and let w�(n) be an optimal n-hop walk, with a corresponding
optimal value ��(n) = F (w�(n)).

Consider an arbitrary iteration of the algorithm. Suppose that
the current � is such that � = ��(n). This means that the length
of w�(n) according to the metric �xl is 0. Any other walk in
W+ cannot have a smaller length since this would contradict
the optimality of w�(n). As shown above, walks not in W+

have a length larger than 0. We conclude that, for � = ��(n),
the algorithm ends with the correct value.

Suppose now that the current � is such that � > ��(n). Ap-
plying an argument similar to the above, it can be verified that
the shortest walk (according to the metric �xl) has length less
than 0. Thus, the algorithm proceeds by decreasing the value of
�, i.e., it gets closer to ��(n).

Finally, suppose that the current � is such that � < ��(n).
Any w 2 W+ must have

P
l2w xl > �

P
l2w yl. This, to-

gether with the observation made earlier for walks not in W+,
implies that, for any walk w,

P
l2w �xl > 0. Thus, the algo-

rithm proceeds by increasing the value of �, i.e., it gets closer to
��(n).

We conclude that the binary search advances in the right di-
rection. The rest of the proof is similar to that of the correspond-
ing algorithm for the min-CT problem (see [34], [33]). 2

10This step can be carried out through a Bellman-Fordshortest path algorithm.



We are now ready to present a solution to the original prob-
lem, min-PR.

Algorithm min-PR:

1. n 1.
2. set xl  al, yl  B

n
� bl, for all l 2 E.

3. Call algorithm min-CTW(n), which returns �(n) and w(n).
4. n n+ 1.
5. If n < N then go to step (2).
6. p� is a path w(m) for which �(m) � �(n) for all 1 � n <

N .

The following lemma establishes the correctness of algorithm
min-PR. In particular, it shows that p� is, necessarily, a (simple)
path.

Lemma A.2:The walk p�, identified by algorithm min-PR, is
a (simple) path that solves problem min-PR.

Proof: It is straightforward that p� is a walk that solves the
corresponding problem min-CTW. Therefore, and since P+ �

W+, it suffices to show that p� does not contain loops. Sup-
pose that p� does contain a loop, denoted by c. Denote w =

p� n c, and note that w is also a walk between the same source-
destination pair. Let n and m be the number of hops on c and
w, respectively (therefore, the number of hops on p� is n+m).

First, we establish that w 2 W+. Since p� solves problem
min-CTW, we have p� 2 W+, therefore:

0 <
X
l2p�

yl =
X
l2p�

(
B

n+m
� bl) = B �

X
l2p�

bl

= B �
X
l2w

bl �
X
l2c

bl < B �
X
l2w

bl =

=
X
l2w

(
B

m
� bl) =

X
l2w

yl; (14)

therefore w 2 W+.

We now show that the loop c contradicts the established opti-
mality of p� w.r.t. problem min-CTW.

P
l2p� xlP
l2p� yl

=

P
l2p� alP

l2p�(
B

n+m
� bl)

=

P
l2p� al

B �
P

l2p� bl

=

P
l2w al +

P
l2c al

B �
P

l2w bl �
P

l2c bl

=

P
l2w al +

P
l2c alP

l2w(
B
m
� bl)�

P
l2c bl

>

P
l2w alP

l2w(
B
m
� bl)

=

P
l2w xlP
l2w yl

: (15)

Since w 2 W+, (15) implies that w is a better solution for
problem min-CTW than p�, which is a contradiction. 2

We thus obtain the following result:

Theorem A.1:Algorithm min-PR solves problem min-PR.
Its complexity is O(N2M � log(N � maxl2E al

minl2E al
� B)).

Proof: Follows from Lemmas A.1 and A.2. 2
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