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Abstract 

The up-coming Gbps high-speed networks are expected to
support a wide range of communication-intensive, real-time
multimedia applications. The requirement for timely delivery of
digitized audio-visual information raises new challenges for the
next generation integrated-service broadband networks. One of
the key issues is the Quality-of-Service (QoS) routing. It selects
network routes with sufficient resources for the requested QoS
parameters. The goal of routing solutions is two-fold: (1)
satisfying the QoS requirements for every admitted connection
and (2) achieving the global efficiency in resource utilization.
Many unicast/multicast QoS routing algorithms were published
recently, and they work with a variety of QoS requirements and
resource constraints. Overall, they can be partitioned into three
broad classes: (1) source routing, (2) distributed routing and (3)
hierarchical routing algorithms. In this paper we give an
overview of the QoS routing problem as well as the existing
solutions.  We present the strengths and the weaknesses of
different routing strategies and outline the challenges. We also
discuss the basic algorithms in each class, classify and compare
them, and point out possible future directions in the QoS
routing area.

1   Introduction

The timely delivery of digitized audio-visual information over
local or wide area networks is now becoming realistic, thanks to
the fruitful research in high-speed networks, image processing,
and video/audio compression. On the other hand, the emerging
distributed multimedia applications also raise new challenges
for the network research and development. For example, a
video-on-demand application requires that its data throughput
over the network must be guaranteed at or above certain rate.

    In the current Internet, data packets of a session may follow
different paths to the destination. The network resources, e.g.
switch buffer and link bandwidth, are fairly shared by packets
from different sessions. However, this architecture does not
meet the requirements of the future integrated-service networks
that carry heterogeneous data traffic. First, it does not support
resource reservation which is vital for the provision of
guaranteed end-to-end performance (bounded delay, bounded
delay jitter, and/or bounded loss ratio). Second, data packets
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may experience unpredictable delays and arrive at the
destination out of order, which is undesirable for continuous
real-time media. Hence, the next generation of high-speed
wide-area networks is likely to be connection-oriented for the
real-time traffic.1  This paper focuses on the routing problem of
the connection establishment. For unicast, the problem is to find
a network path that meets the requirement of a connection
between two end users. For multicast, the problem is to find a
multicast tree rooted at a sender and the tree covers all receivers
with every internal path from the sender to a receiver satisfying
the requirement.

    The notion of Quality-of-Service (QoS) has been proposed to
capture the qualitatively or quantitatively defined performance
contract between the service provider and the user applications.
The QoS requirement of a connection is given as a set of
constraints, which can be link constraints, path constraints [31],
or tree constraints. A link constraint specifies the restriction on
the use of links. For instance, a bandwidth constraint of a
unicast connection requires that the links composing the path
must have certain amount of free bandwidth available. A path
constraint specifies the end-to-end QoS requirement on a single
path; a tree constraint specifies the QoS requirement for the
entire multicast tree. For instance, a delay constraint of a
multicast connection requires that the longest end-to-end delay
from the sender to any receiver in the tree must not exceed an
upper bound.

    A feasible path (tree) is one that has sufficient residual
(unused) resources to satisfy the QoS constraints of a
connection. The basic function of QoS routing is to find such a
feasible path (tree). In addition, most QoS routing algorithms
consider the optimization of resource utilization, measured by
an abstract metric cost. The cost of a link can be defined in
dollars or as a function of the buffer or bandwidth utilization.
The cost of a path (tree) is the total cost of all links on the path
(tree). The optimization problem is to find the least-cost path
(tree) among all feasible paths (trees).

    The problem of QoS routing is difficult due to a number of
reasons. First, distributed applications such as Internet phone
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packets (or cells) of the same connection are sent along the path in the
FIFO order.
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and distributed games have very diverse QoS constraints on
delay, delay jitter, loss ratio, bandwidth, etc. Multiple
constraints often make the routing problem intractable. For
example, finding a feasible path with two independent path
constraints is NP-complete [20]. Second, any future integrated-
service network is likely to carry both QoS traffic and best-
effort traffic, which makes the issue of performance
optimization complicated. It is hard to determine the best
operating point for both types of traffic if their distributions are
independent. Although the QoS traffic will not be affected due
to resource reservation, the throughput of the best-effort traffic
will suffer if the overall traffic distribution is misjudged. Third,
the network state changes dynamically due to transient load
fluctuation, connections in and out, and links up and down. The
growing network size makes it increasingly difficult to gather
up-to-date state information in a dynamic environment,
particularly when the wireless communication is involved. The
performance of a QoS routing algorithm can be seriously
degraded if the state information being used is outdated.
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Figure 1:  Network state
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    Figure 2: Global state in distance vectors at node s

    Many QoS routing algorithms have been proposed recently
with a variety of constraints considered. The purpose of this
paper is to provide a survey on the recent development in this
area. In the following, we present different routing problems,
their challenges, the routing strategies, the classification and
comparison of the existing routing algorithms, and possible
future directions. We refer to the QoS routing simply by
‘‘routing’’, unless it is necessary to make clear distinction
between the QoS routing and the best-effort routing.

2   Weighted Graph Model

A network can be modeled as a graph 〈V, E〉. Nodes (V) of the
graph represent switches, routers and hosts. Edges (E) represent
communication links. The edges are undirected only if the
communication links are always symmetric. A symmetric link
has the same properties (capacity, propagation delay, etc) and
the same traffic volume in both directions. For most real
networks, the communication links are asymmetric, and hence
every link is represented by two directed edges in the opposite
directions. It should be noted that, though the examples in this
paper use the undirected graphs for fewer edges, most routing
algorithms under discussion were designed for asymmetric
networks.

    Every link has a state measured by the QoS metrics of
concern. In Figure 1, the link state is a triple consisting of
residual bandwidth, delay and cost. Every node also has a state.
The node state can be either measured independently or, as it
does in this paper, combined into the state of the adjacent links.
For the latter case, the residual bandwidth is the minimal of the
link bandwidth and the CPU bandwidth 2; the delay of a link
consists of the link propagation delay and the queueing delay at
the node;  the cost of a link is determined by the total resource
consumption at the link and the node.

3   Maintenance of State Information

Routing consists of two basic tasks. The first task is to collect
the state information and keep it up-to-date. The second task is
to find a feasible path for a new connection based on the
collected information. The performance of any routing
algorithm directly depends on how well the first task is solved.

Local state: Each node is assumed to maintain its up-to-date
local state, including the queueing and propagation delay, the
residual bandwidth of the outgoing links, and the availability of
other resources.

Global state:  The combination of the local states of all nodes
is called a global state. Every node is able to maintain the
global state by either a link-state protocol [37,39,52] or a
distance-vector protocol [23,33,40], which exchanges the local
states among the nodes periodically. The link-state protocols
broadcast the local state of every node to every other node so
that each node knows the topology of the network and the state
of every link (Figure 1). The distance-vector protocols
periodically exchange distance vectors among adjacent nodes.
A distance vector has an entry for every possible destination,
consisting of the property of the best path and the next node  on
the best path (Figure 2).

    The global state kept by a node is always an approximation
of  the current  network state due to the non- negligible delay of
propagating local states. As the network size grows, the
imprecision increases.
                                                       
2 The CPU bandwidth is defined as the maximum rate at which
the node can pump data into the link.



3

A

B C

A

A.a.1 A.a.2

A.a

A.a.4

A.a.3

A.b A.c

B.a

B.b

B C

C.a

C.b

(c) Second-level abstraction

A.a.1 A.a.2

A.a.4

A.a.3

B.a.1 B.a.2

B.a.3

B.b.1
B.b.2 B.b.3

B.b.4 B.b.5

B.a.4

C.a.1

C.a.2
C.a.3

C.a.4 C.a.5

C.b.1

C.b.3

C.b.2

A.c.1
A.c.2

A.c.3

A.c.4
A.c.5

A.b.1 A.b.2

A.b.3

A.b

A.a

A.c

C.a

C.b

B.a

B.b

(a) Physical network

(b) First-level abstraction

(e) the network image viewed by node A.a.1

A.b

B C

A.a.3

A.a.1 A.a.2

A.a.4

A.c

(d) clustering

Figure 3:  Hierarchical network model



4

Aggregated (partial) global state:  A common approach to
achieve scalability is to reduce the size of the global state by
aggregating information according to the hierarchical structure
of large networks. Figure 3 shows the hierarchical model used
by [19,22]. In Figure 3 (a), nodes are clustered into the first-
level groups. The nodes with at least one link crossing two
groups are called border nodes. In Figure 3 (b), each group is
represented by a logical node. A physical node in the group is
elected to act on behalf of the logical node and store the higher-
level state information. The links connecting logical nodes are
logical links. The logical nodes are further clustered to form
higher-level groups, which are abstracted by higher-level
logical nodes Figure 3 (c). Figure 3 (d) presents the overall
clustering. On each hierarchy level, the nodes in a group are
called the children of the logical node representing the group;
the logical node is called the parent. An ancestor of a node is
either its parent or an ancestor’s parent. We have used the
simplest topology aggregation, which abstracts a group by a
single logical node. There are other types of aggregation using
different simple topologies to replace a group. Their
performance was studied in [3].

    Each physical node maintains an aggregated network image.
The image maintained at node A.a.1 is shown in Figure 3 (e). It
stores different portions of the network in different details.
More specifically, the image is derived by starting from the
highest hierarchy level and recursively replacing the ancestor of
the node with the corresponding lower-level group. As the
network topology is aggregated, the state information is
aggregated as well. The state of each logical link is the
combination of the states of many lower-level links. The link-
state algorithm can be extended to collect the aggregated state
information for every node [19]. As the state is aggregated, the
imprecision is also aggregated.

4 Routing Problems

The routing problems can be divided into two major classes:
unicast routing and multicast routing. The unicast routing
problem is defined as follows: given a source node s, a
destination node t, a set of QoS constraints C and possibly an
optimization goal, find the best feasible path from s to t, which
satisfies C. The multicast routing problem is defined as follows:
given a source node s, a set R of destination nodes, a set of
constraints C and possibly an optimization goal, find the best
feasible tree covering s and all nodes in R, which satisfies C.
The two classes of routing problems are closely related. The
multicast routing can be viewed as a generalization of the
unicast routing in many cases. These two problem classes can
be further partitioned into sub-classes as follows.

4.1   Unicast Routing

For some QoS metrics such as residual bandwidth and residual
buffer space, the state of a path is determined by the state of the
bottleneck link. For example, in Figure 1 the bandwidth of path
s → i → j → t is 1, which is the bandwidth of the bottleneck
link (i, j). For these QoS metrics, two basic routing problems
can be defined. One is called link-optimization routing. An

example is the bandwidth-optimization routing, which is to find
a path that has the largest bandwidth on the bottleneck link.
Such a path is called the widest path [56]. The other problem is
called link-constrained routing. An example is the bandwidth-
constrained routing, which is to find a path whose bottleneck
bandwidth is above a required value. The link-optimization
routing problem can be solved by a slightly modified Dijkstra’s
algorithm [16] or Bellman-Ford algorithm [6]. The link-
constrained routing problem can be easily reduced to the link-
optimization problem.

    For other QoS metrics such as delay, delay jitter and cost, the
state of a path is determined by the combined state over all links
on the path. For example, in Figure 1 the delay of path s → i →
j → t is 10, which is the total delay of all links on the path. Two
basic routing problems can be defined for this type of QoS
metrics. One is called path-optimization routing. An example is
the least-cost routing, which is to find a path whose total cost is
minimized. The other problem is called path-constrained
routing. An example is the delay-constrained routing, which is
to find a path whose delay is bounded by a required value. Both
problems can be directly solved by Dijkstra’s (or Bellman-Ford)
algorithm.

    Many composite routing problems can be derived from the
above four basic problems (Figure 4). For example, the
bandwidth-constrained least-delay routing problem belongs to
the link-constrained path-optimization routing problem class. It
is to find the least-delay path that has the required bandwidth.
This problem can be solved by a shortest path algorithm on the
graph where the links violating the bandwidth constraint have
been removed. There are four other problem classes that are
solvable in polynomial time by a modified shortest path
algorithm. They are link-constrained link-optimization routing,
multi-link-constrained routing, link-constrained path-
constrained routing, and path-constrained link-optimization
routing. Figure 4 gives an example for each of them.

    There are two NP-complete problem classes, path-
constrained path-optimization routing (PCPO) and multi-path-
constrained routing (MPC), which are of particular interest. An
example of PCPO is the delay-constrained least-cost routing. It
is to find the least-cost path with bounded delay. An example of
MPC is the delay-delayjitter-constrained routing. It is to find a
path with both bounded delay and bounded delay jitter. For the
above problems to be NP-complete, we have two assumptions:
(1) the QoS metrics are independent, and (2) they are allowed to
be real numbers or unbounded integer numbers. If all metrics
except one take bounded integer values, then the problems are
solvable in polynomial time by running an extended Dijkstra’s
(or Bellman-Ford) algorithm [10].3 If all metrics are dependent
on a common metric, then the problems may also be solvable in
polynomial time. For example, the worst-case delay and delay
jitter are  functions  of  bandwidth  in  networks  using the WFQ

                                                       
3 If all metrics (e.g., delay) except one take unbounded integer values
but the maximum constraints (e.g., delay bound requirement) are
bounded, then the problems are also solvable in polynomial time.
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scheduling. The delay-delayjitter-constrained routing problem
is solvable in polynomial time in such networks [34]. The
acronyms used in this paper are listed in Table 1.

Table 1:  List of Acronyms

CBF Constrained Bellman-Ford algorithm
EBF Extended Bellman-Ford algorithm

EDSP Extended Dijkstra’s Shortest Path algorithm
MOSFP Multicast extension to OSFP

MPC Multi-Path-Constrained routing
NDF Nearest Destination First
OSFP Open Shortest Path First algorithm
PCPO Path-Constrained Path-Optimization routing
PNNI Private Network-Network Interface
QoS Quality of Service
WFQ Weighted Fair Queueing

4.2   Multicast routing

The hierarchy of multicast routing problems is defined similarly
in Figure 4. The difference is that an optimization or a
constraint must be applied to the entire tree instead of a single
path.  For example, the bandwidth-optimization routing asks to
maximize the bandwidth of the bottleneck link of the tree. The
delay-constrained routing finds a tree in which the end-to-end
delay from the sender to any destination is bounded by a given
value.

    There are several well-known multicast routing problems.
The Steiner tree problem is to find the least-cost tree, the tree
covering a group of destinations with the minimum total cost
over all links. It is also called the least-cost multicast routing
problem, belonging to the tree-optimization routing problem
class (Figure 4). The constrained Steiner tree problem is to find
the least-cost tree with bounded delay. It is also called the
delay-constrained least-cost routing problem, belonging to the
tree-constrained tree-optimization routing problem class.
Finding either a Steiner tree or a constrained Steiner tree is NP-
complete [48]. The delay-delayjitter-constrained multicast
routing problem belongs to the multi-tree-constrained routing
problem class. It is also NP-complete [46], under the
assumptions that (1) the metrics under constraints are
independent and (2) they are allowed to take real numbers or
unbounded integer numbers. However, this problem (or any
other multi-tree-constrained routing problem) is solvable in
polynomial time if all metrics except one take bounded integer
values. If all metrics are dependent on a common metric, then
the problem may also be solvable in polynomial time. Figure 5
gives examples of constrained paths and constrained trees.

4.3   QoS routing and other network components

QoS routing v.s. best-effort routing: The QoS routing is
different from the traditional best-effort routing. The former is
normally connection-oriented with resource reservation to

provide the guaranteed service. The latter can be either
connection-oriented or connectionless with a dynamic
performance subject to the current availability of shared
resources. Meeting the QoS requirement of each individual
connection and reducing the call-blocking rate are important for
the QoS routing, while the fairness, overall throughput and
average response time are the essential issues for the traditional
routing.

QoS routing and resource reservation: The QoS routing and
the resource reservation [18,59] are two important, closely
related network components. In order to provide the guaranteed
services, the required resources (CPU time, buffer, bandwidth,
etc.) must be reserved when a QoS connection is established.
Hence, the data transmission of the connection will not be
affected by the traffic dynamics of other connections sharing
the common links. Before the reservation can be done, a path
with the best chance to satisfy the resource requirement must be
selected. That is the job of routing. While routing is decoupled
from resource reservation in most existing schemes, some
recent proposals combine routing and resource reservation in a
single multi-path message pass from the source to the
destination [13].

QoS routing and admission control: The task of admission
control is to determine whether a connection request should be
accepted or rejected. Once a request is accepted, the required
resources must be guaranteed.  The admission control is often
considered as a by-product of QoS routing and resource
reservation. If the resource reservation is successfully done
along the route(s) selected by the routing algorithm, the
connection request is accepted; otherwise, the request is
rejected.

QoS routing and QoS negotiation: A QoS routing algorithm
may fail to find a feasible path for a new connection, either
because there does not exist a feasible path, or because the
searching space of a heuristic approach does not cover any
existing feasible path. When this happens, the system can either
reject the connection or negotiate with the application for a
looser QoS constraint. The QoS routing can assist the
negotiation by finding the best available path and returning the
QoS bounds supported. If the negotiation is successful
according to the provided bounds, the best available path can be
used immediately.

5   Routing Strategies

Routing involves two basic tasks: (1) collecting the state
information and keeping it up-to-date, and (2) searching the
state information for a feasible path. In order to find an optimal
path which satisfies the constraints, the state information about
the intermediate links between the source and the destination(s)
must be known. The search of feasible paths greatly depends on
how the state information is collected and where the
information is stored.
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    There are three routing strategies, source routing, distributed
routing and hierarchical routing. They are classified according
to the way how the state information is maintained and how the
search of feasible paths is carried out. In the source routing,
each node maintains the complete global state, including the
network topology and the state information of every link. Based
on the global state, a feasible path is locally computed at the
source node. A control message is then sent out along the
selected path to inform the intermediate nodes of their
precedent and successive nodes. A link-state protocol is used to
update the global state at every node. In the distributed routing,
the path is computed by a distributed computation. Control
messages are exchanged among the nodes and the state
information kept at each node is collectively used for the path
search. Most distributed routing algorithms need a distance-
vector protocol (or a link-state protocol) to maintain a global
state in form of distance vectors (Figure 2) at every node. Based
on the distance vectors, the routing is done on a hop-by-hop
basis. In the hierarchical routing, nodes are clustered into
groups, which are further clustered into higher-level groups
recursively, creating a multi-level hierarchy. Each physical
node maintains an aggregated global state (Section 3). This
state contains the detailed state information about the nodes in
the same group and the aggregated state information about the
other groups. The source routing is used to find a feasible path
on which some nodes are logical nodes representing groups. A
control message is then sent along this path to establish the
connection. When the border node of a group represented by a
logical node receives the message, it uses the source routing to
expend the path through the group.

5.1   Strengths and weaknesses of source routing

The source routing achieves its simplicity by transforming a
distributed problem into a centralized one. By maintaining a
complete global state, the source node calculates the entire path
locally. It avoids dealing with the distributed computing
problems such as distributed state snapshot, deadlock detection
and distributed termination problem. It guarantees loop-free
routes. Many source algorithms are conceptually simple and
easy to implement, evaluate, debug and upgrade. In addition, it
is much easier to design centralized heuristics for some NP-
complete routing problems than to design distributed ones.

    The source routing has several problems. First, the global
state maintained at every node has to be updated frequently
enough to cope with the dynamics of network parameters such
as bandwidth and delay. It makes the communication overhead
excessively high for large scale networks. Second, the link-state
algorithm can only provide approximate global state due to the
overhead concern and non-negligible propagation delay of state
messages. As a consequence, the QoS routing may fail in
finding an existing feasible path due to the imprecision in the
global state used [49]. Third, the computation overhead at the
source is excessively high. This is especially true in the case of
multicast routing or when multiple constraints are involved. In
summary, the source routing has the scalability problem. It is
impractical for any single node to have access to the detailed

state information about all nodes and all links in a large
network [22].

5.2   Strengths and weaknesses of distributed routing

In distributed routing, the path computation is distributed
among the intermediate nodes between the source and the
destination. Hence, the routing response time can be made
shorter and the algorithm is more scalable. Searching multiple
paths in parallel for a feasible one is made possible, which
increases the chance of success. Most existing distributed
routing algorithms [47,54,56] require each node to maintain a
global network state (distance vectors), based on which the
routing decision is made on a hop-by-hop basis. Some flooding-
based algorithms do not require any global state to be
maintained. The routing decision and optimization is done
entirely based on the local states [11,51].

    The distributed routing algorithms which depend on the
global state share more or less the same problems of the source
routing algorithms. The distributed algorithms which do not
need any global state tend to send more messages. It is also
very difficult to design efficient distributed heuristics for the
NP-complete routing problems especially in the case of
multicast routing, because there is no detailed topology and
link-state information available. In addition, when the global
states at different nodes are inconsistent, loops may occur. A
loop can be easily detected when the routing message is
received by a node for the second time. However, loops
generally make the routing fail because the distance vectors do
not provide sufficient information for an alternative path.

5.3   Strengths and weaknesses of hierarchical routing

The hierarchical routing has long been used to cope with the
scalability problem of source routing in large internetworks
[3,5]. The PNNI (Private Network-Network Interface) [19]
standard for routing in ATM networks is also hierarchical. The
hierarchical routing scales well because each node only
maintains a partial global state where groups of nodes are
aggregated into logical nodes. The size of such an aggregated
state is logarithmic in the size of the complete global state. The
well-studied source routing algorithms are directly used at each
hierarchical level to find feasible paths based on the aggregated
state. Hence, the hierarchical routing retains many advantages
of the source routing. It has also some advantages of the
distributed routing because the routing computation is shared by
many nodes.

    However, as the network state is aggregated, additional
imprecision is introduced, which has a significant negative
impact on QoS routing [22]. Recall that a logical node in an
aggregated network image may represent a large subnet with
complex internal structure and a logical link may be the
abstraction of multiple physical links. Consider the aggregated
network image in Figure 3 (e). It is hard to estimate the end-to-
end delay from A.a.1 to a node in the group represented by C,
because the internal structure of C is hidden. More specifically,
although the actual delay between physical nodes in A.c and
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physical nodes in C may vary, there is a single delay from A.c
to C in the aggregated state. Such an abstraction inevitably
results in imprecision. The same thing happens to all other
logical links, (A.a.3, A.b), (A.a.4, A.c), (A.b, A.c), (A.b, B) and
(B, C).

link state = (bandwidth, delay)
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Figure 6:  (a) the internal state, (b) an incorrect aggregation
on link (D, F)

    The problem becomes more complicated when multiple QoS
constraints are involved. Figure 6 shows an example. Two QoS
metrics, bandwidth and delay, are considered. The pair of
numbers beside a link is the residual bandwidth and the delay of
the link, respectively. Four nodes, D.1, D.2, D.3 and D.4, form
a group D. Suppose after aggregation the internal bandwidth
and delay of D are merged into those of links (D, F) and (D, G).
Consider the problem of determining the bandwidth and delay
of link (D, F). A naive way is to find the path with the largest
bandwidth from D.1 to D.2, which is P1 = D.1 → D.3 → D.4 →
D.2 with bandwidth 3. The bandwidth of (D, F) is the minimum
of 3 and the bandwidth of (D.2, F), and the result is 3.
Similarly, find the path with the smallest delay, which is P2 =
D.1→ D.2 with delay 1.  The delay of (D, F) is the summation
of 1 and the delay of (D.2, F), and the result is 2. Such an
optimistic approach is however incorrect because P1 and P2 are
not the same path. In general, there exist many different paths
between two border nodes of a group. Some paths have better
bandwidth availability and some others have smaller delay.
There may not exist a path with the best properties in both
terms. How to aggregate such information is still an open
problem.

6   Unicast Routing Algorithms

We describe the unicast source, distributed and hierarchical
routing algorithms in this section. We discuss the problems and
solutions, present the existing algorithms, compare them and
discuss their pros and cons. See Table 2 for a summarizing
comparison. Algorithms are referred by the authors’ names and
a reference to their paper.

6.1   Source routing algorithms

Wang-Crowcroft algorithm [56]: Wang-Crowcroft algorithm
finds a bandwidth-delay-constrained path by Dijkstra’s shortest-
path algorithm. First, all links with a bandwidth less than the
requirement are eliminated so that any paths in the resulting
graph will satisfy the bandwidth constraint. Then, the shortest

path in terms of delay is found. The path is feasible if and only
if it satisfies the delay constraint.

Ma-Steenkiste algorithm [34]: Ma and Steenkiste showed that
when a class of WFQ-like (Weighted Fair Queueing)
scheduling algorithms [7,15,21,58] are used, the end-to-end
delay, delay-jitter, and buffer space bounds are not independent.
They are functions of the reserved bandwidth, the selected path
and the traffic characteristics. Therefore, the problem of finding
a path satisfying bandwidth, delay, delay-jitter and buffer space
constraints, which is NP-complete in general [20,56], can be
simplified. It can be solved by a modified version of Bellman-
Ford algorithm in polynomial time by taking those functional
relationships into consideration. A much further study of the
QoS routing in rate-based scheduling networks was done
recently by Orda [38].

Guerin-Orda algorithm [22] 4: Guerin and Orda studied the
bandwidth-constrained routing problem and the delay-
constrained routing problem with imprecise network states. The
model of imprecision is based on the probability distribution
functions. Every node maintains, for each link l, the probability
pl(w) of link l having a residual bandwidth of w units. w ∈
[0..cl], where cl is the capacity of the link. The goal of the
bandwidth-constrained routing is to find the path that has the
highest probability to accommodate a new connection with a
bandwidth requirement of x units. This problem can be solved
by a standard shortest path algorithm with each link l weighted
by ( − log pl (x) ).

    The goal of the delay-constrained routing is to find a path
that has the highest probability to satisfy a given end-to-end
delay bound. Suppose every node maintains, for each link l, the
probability pl(d) of link l having a delay of d units, where d
ranges from zero to the maximum possible value. It is NP-hard
to find the path that has the highest probability of satisfying a
given delay constraint [22]. But various special cases (e.g.,
symmetric networks and tight constraints) can be solved in
polynomial time. Heuristic algorithms were proposed for the
NP-hard problem. The idea is to transforming a global
constraint into local constraints. More specifically, it splits the
end-to-end delay constraint among the intermediate links in
such a way that every link in the path has an equal probability
of satisfying its local constraint. The heuristics then try to find
the path with the best multiplicative probability over all links.

    Guerin-Orda algorithm works with imprecise information
and is suitable to be used in the hierarchical routing. One of the
heuristic algorithms was extended by the authors to make
routing based on the aggregated network state of the
hierarchical model (Section 3). A further study of QoS routing
with imprecise state based on the probability model was done
by Lorenz and Orda [32].

                                                       
4 Guerin-Orda algorithm was designed to be used in the
hierarchical routing, though we present it as an independent
source routing algorithm in this paper.
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Table 2: Unicast routing algorithms

Communication complexityAlgorithm Solving problem Routing
strategy

Time
complexity Maintaining state routing

Wang-Crowcroft [56] Bandwidth-delay-constrained r. Source O(vlogv + e) Global Zero
Bandwidth-constrained r. Source O(vlogv + e) Global ZeroMa-Steenkiste [34]
Multi-constrained r.   (1) Source O(kve)    (1) Global Zero

Bandwidth-constrained r. Source O(vlogv + e) Imprecise global ZeroGuerin-Orda [22]
Delay-constrained r. Source Polynomial   (2) Imprecise global Zero

Chen-Nahrstedt [10] Bandwidth-cost-constrained r. Source O(xve)   (3) Global Zero
Wang-Crowcroft [56] Bandwidth-optimization r. Distributed O(ve) Global O(v)

Salama et al. [47] Delay-constrained least-cost r. Distributed O(v3) Global O(v3)    (4)

Sun-Landgendorfer [54] Delay-constrained least-cost r. Distributed O(v) Global O(v)
Cidon et al. [13] Generic r.   (5) Distributed O(e) Global O(e)   (6)

Shin-Chou [51] Delay-constrained r. Distributed O(e) Local O(e)
Chen-Nahrstedt [11] Generic r.   (5) Distributed O(e) Local O(e)

PNNI [19] Generic r.   (5) Hierarchical Polynomial   (7) Aggregated O(v)

•  v is the number of nodes and e is the number of edges.
•  After a source routing algorithm selects a path, a control message needs to be sent along the path to establish the connection,

which has a worst-case communication overhead of O(v).
1) Ma and Steenkiste studied routing with constraints on delay, delay jitter and buffer space in rate-based scheduling networks. k

in the time complexity is the number of all possible residual bandwidth that a link may have.
2) Heuristics with different assumptions have different polynomial time complexities.
3) x is a constant in the algorithm. A larger x results in a higher probability of finding a feasible path and a higher overhead.
4) It was shown that the average overhead is substantially less than the worst-case overhead.
5) A routing framework was proposed, from which algorithms on different QoS constraints can be derived.
6) Variants of the algorithm may have higher worst-case overhead.
7) The time complexity of a hierarchical routing algorithm depends on what source routing algorithm is used to route the

connection through every group.

Table 3:  Multicast routing algorithms

Communication complexityAlgorithm Solving problem Routing
strategy

Time complexity
Maintaining state routing

MOSPF [36] Least-delay r. Source O(vlogv) Global Zero
Kou et al. [30] Least-delay r. Source O(gv2) Global Zero

Takahashi-Matsuyama [55] Least-delay r. Source O(gv2) Global Zero
Kompella et al. [28] Delay-constrained least-cost r. Source O(v3∆)    (1) Global Zero

Sun-Landgendorfer [53] Delay-constrained least-cost r. Source O(vlogv + e) Global Zero
Widyono [57] Delay-constrained least-cost r. Source Exponential    (2) Global Zero
Zhu et al. [60] Delay-constrained least-cost r. Source O(kv3logv)    (3) Global Zero

Rouskas-Baldine [46] Delay-constrained least-cost r. Source O(klgv4)    (3) Global Zero
Kompella et al. [29] Delay-constrained least-cost r. Distributed O(v3) Global O(v3)
Chen-Nahrstedt [11] Generic r. Distributed O(ge) local O(ge)

•  v is the number of nodes, e is the number of edges, and g is the number of destinations.
•  After a source routing algorithm constructs a multicast tree, a control message needs to be sent down the tree to establish the

connection, which has a worst-case communication overhead of O(e).
1) ∆ is the delay requirement. The time complexity is polynomial if ∆ is a bounded integer.
2) Widyono algorithm uses the constrained Bellman-Ford (CBF) algorithm. Widyno pointed out that there are cases where the

running time of CBF grows exponentially. However, simulation shows that its average performance is comparable to other
algorithms that construct constrained Steiner trees [48].

3) k and l are constants in the algorithm. A larger k (or l) results in a higher probability of finding a feasible tree and a higher
overhead.
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Figure 7:  Chen-Nahrstedt heuristic (C = 20.0 and x = 5). (a) The original problem is to find a path from s to t such that the
delay is bounded by 8.0 and the cost is bounded by 20.0. (b) The costs of links are mapped to integers in [1..6]. For link (s,
u), the cost 11.5 is mapped to 3. The new problem is find a path from s to t such that the delay is bounded by 8.0 and the
cost is bounded by 5. A feasible path is s → u → v → t, which, as expected, is also a feasible path for the original problem.
(c) the cost-mapping table.

Chen-Nahrstedt algorithm [10]: Chen and Nahrstedt proposed
a heuristic algorithm for the NP-complete multi-path-
constrained routing problem. We have already known in
Section 4.1 that if all metrics except one take bounded integer
values, then the multi-path-constrained routing problem is
solvable in polynomial time. Consider the delay-cost-
constrained routing. The idea is to map the cost (or delay) of
every link from an unbounded real number to a bounded
integer. This reduces the original NP-complete problem to a
simpler problem solvable in polynomial time. Let C be the cost
requirement and x be a small integer. The algorithm first maps
the cost of every link to an integer bounded by x+1. Real
numbers in [0, C] are mapped into integers in [0..x], real
numbers in (C, ∞] are mapped to x+1, and the cost bound C is
mapped to x. See Figure 7 for an example. The new problem
with the link cost bounded by x+1 can be solved in polynomial
time by an extended Dijkstra’s algorithm (EDSP) or an
extended Bellman-Ford algorithm (EBF) [10]. It was proved
that a feasible path of the new problem must also be a feasible
path of the original problem. The performance of the algorithm
is tunable by choosing the value of x. A larger x results in a
larger probability of finding a feasible path and a larger
overhead.

Awerbuch et al. algorithm [1]: Awerbuch et al. proposed a
throughput-competitive routing algorithm for bandwidth-
constrained connections. The algorithm tries to maximize the
amortized (average)  throughput  of the network  over time. It
combines the functions of admission control and routing. Every
link is associated with a cost function that is exponential to the
bandwidth utilization. A new connection is admitted into the
network only if there exists a path whose accumulated cost over
the duration of the connection does not exceed the profit that is
measured by the bandwidth-duration product of the connection.
It was proved that such a path satisfies the bandwidth
constraint. Let T be the maximum connection duration and v
the number of nodes in the network. The algorithm achieves a
throughput that is within O(log vT) factor of the highest
possible throughput achieved by the best off-line algorithm that
is assumed to know all of the connection requests in advance.

The competitive routing for connections with unknown duration
was studied in [2]. A survey for the competitive routing
algorithms was done by Plotkin [43].

Summary: All the above algorithms require a global state to be
maintained at every node. Most algorithms transform the
routing problem to a shortest path problem and then solve it by
Dijkstra’s or Bellman-Ford algorithm. We summarize the
distinctive properties of some algorithms as follows: Ma-
Steenkiste algorithm provides a routing solution to rate-based
networks; Guerin-Orda algorithm works with imprecision
information and hence is suitable to be used in the hierarchical
routing; the performance of Chen-Nahrstedt algorithm is
tunable by trading the overhead for the success probability;
Awerbuch et al. algorithm takes the connection duration into
account, which allows more precise cost-profit comparison. All
the above algorithms are executed at the connection arrival time
on a per-connection basis, which may cause the overall
computational overhead excessively high. Path precomputation
and caching were studied to make a tradeoff between the
processing overhead and the routing performance [8,26,42,50].

6.2   Distributed routing algorithms

Wang-Crowcroft algorithm [56]: Wang and Crowcroft
proposed a hop-by-hop distributed routing scheme. Every node
pre-computes a forwarding entry for every possible destination.
The forwarding entry, which is updated periodically, stores the
next hop on the routing path to the destination. After the
forwarding entries at every node are computed, the actual
routing is simply to follow the entries.

    Given two end nodes, the path with the maximum bottleneck
bandwidth is called the widest path. If there are several such
paths, the one with the smallest delay is called the shortest-
widest path. A link-state protocol is used to maintain a
complete global state at every node. Based on the global state,
the forwarding entry for the shortest-widest path to each
destination is computed by a modified Bellman-Ford (or
Dijkstra’s) algorithm [56]. A routing path is the combination of
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Figure 8:  Salama et al. algorithm v.s. Sun-Landgendorfer algorithm

the forwarding entries indexed by the same destination at all
intermediate nodes. The path is loop-free if the state
information at all nodes is consistent. However, in a dynamic
network, the path may have a loop due to the contradicting state
information at different nodes.

Salama et al. algorithm [47]: Salama et al. proposed a
distributed heuristic algorithm for the NP-complete delay-
constrained least-cost routing problem. A cost vector and a
delay vector are maintained at every node by a distance-vector
protocol. The cost (delay) vector contains for every destination
the next node on the least-cost (least-delay) path. A control
message is sent from the source toward the destination to
construct a delay-constrained path. Any node i at the end of the
partially-constructed path can select one of only two alternative
outgoing links. One link (i, j) is on the least-cost path directed
by the cost vector, and the other (i, k) is on the least-delay path
directed by the delay vector. Link (i, j) has the priority to be
chosen, as long as adding the least-delay path from j to the
destination does not violate the delay constraint.
    Loops may occur as the control message chooses the least-
cost path and the least-delay path alternatively. A loop is
detected if the control message visits a node twice. Whenever it
happens, the routing process is rolled back until reaching a node
from which the least-cost path was followed. The routing
process resumes from there by changing the next hop along the
least-delay path. It was proved that such a mechanism removes
all loops, provided that the delay and cost vectors at all nodes
are up-to-date (or at least consistent), a condition that does not
hold sometimes in a dynamic network.

Sun-Landgendorfer algorithm [54]: Sun and Langendorfer
improved the worst-case performance of Salama et al.
algorithm by avoiding loops instead of detecting and removing
loops. A control message is sent to construct the routing path.
The message travels  along the least-delay path  until reaching a
node from which the delay of the least-cost path satisfies the

delay constraint. From that node on, the message travels along
the least-cost path all the way to the destination. The difference
between Sun-Landgendorfer algorithm and Salama et al.
algorithm is illustrated in Figure 8. It was proved that the
algorithm constructs loop-free paths, provided that the state
information at all nodes is updated (or consistent). In a dynamic
network, different nodes may have inconsistent information.
The least-cost (least-delay) path computed based on such
inconsistent information may contain a loop, which makes the
control message not able to reach the destination.

Cidon et al. algorithm [13]: The distributed multi-path routing
algorithms proposed by Cidon et al. combine the process of
routing and resource reservation. Every node maintains the
topology of the network and the cost of every link. When a
node wishes to establish a connection with certain QoS
constraints, it finds a subgraph of the network which contains
links that lead to the destination with a “reasonable” cost. Such
a subgraph is called a diroute. A link is eligible if it has the
required resources. Reservation messages are flooded along the
eligible links in the diroute toward the destination and reserve
resources along different paths in parallel. When the destination
receives a reservation message, a routing path is established.
The algorithm releases resources from segments of the diroute
as soon as it learns that these segments are inferior to another
segment. Variants of the above algorithm were proposed to
make tradeoff between the routing time and the path optimality.
Reserving resources on multiple paths makes the routing faster
and more resilient to the dynamic change of the network state.
However, it also increases the level of resource contention.

Shin-Chou algorithm [51]: Shin and Chou proposed a
distributed routing scheme for establishing delay-constrained
connections. No global state is required to be maintained at any
node. The algorithm floods routing messages from the source
toward the destination. Each message accumulates the total
delay of the path it has traversed so far. When a routing
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message is received by an intermediate node, the message is
forwarded only when one of the following two conditions is
satisfied. (1) It is the first such message received by the node, or
(2) it carries a better accumulated delay than the previously
received messages. If either condition is true, the message will
be forwarded along the outgoing links whose delay plus the
message’s accumulated delay does not exceed the end-to-end
delay requirement. Once a message reaches the destination, it
finds a delay-constrained path, which is the one it has traversed.
It was shown that, when certain scheduling policies [27] are
used and the routing messages are set to the appropriate
priority, there will be at most one message sent along every
link. Another flooding-based routing algorithm was proposed
by Hou [24]. It routes virtual circuits with delay requirements in
ATM networks.

Chen-Nahrstedt algorithm [11,12]:
1) selective probing [11]   Chen and Nahrstedt proposed a
distributed routing framework based on selective probing. After
a connection request arrives, probes are flooded selectively
along those paths which satisfy the QoS and optimization
requirements. Every node only maintains its local state, based
on which the routing and optimization decisions are made
collectively in the process of probing. As in Shin-Chou
algorithm, each probe arriving at the destination detects a
feasible path.
    Algorithms were derived from the framework to route
connections with a variety of QoS constraints on bandwidth,
delay, delay jitter, cost and their combinations. Several
techniques were developed to overcome the high
communication overhead of Shin-Chou algorithm. First, probes
are only allowed to be forwarded to a subset of outgoing links
selected based on the topological distances to the destination.
Second, the iterative probing is used to further reduce the
overhead. At the first iteration, probes are sent only along the
shortest paths. If the first iteration fails, probes are allowed to
be sent along paths with increasing lengths in the following
iterations. Simulation shows that with two iterations Chen-
Nahrstedt algorithm achieves substantial overhead reduction.

2) ticket-based probing [12]    If every node maintains a global
state, which is allowed to be imprecise, the ticket-based probing
is used to improve the performance of selective probing.
Certain number of tickets is issued at the source according to
the contention level of network resources. Each probe must
contain at least one ticket in order to be valid. Hence, the
maximum number of probes is bounded by the total number of
tickets, which limits the maximum number of paths to be
searched. The algorithm utilizes the imprecise state at
intermediate nodes to guide the limited tickets (the probes
carrying them) along the best possible paths to the destination.
In such a way, the probability of finding a feasible path is
maximized with the limited probing overhead.

Summary:  The distinctive properties of the above algorithms
are summarized as follows: (1) Salama et al. algorithm and
Sun-landgendorfer algorithm provide efficient distributed
solutions to the NP-complete delay-constrained least-cost
routing problem.  (2) Cidon et al. algorithm, Shi-Chou

algorithm and Chen-Nahrstedt algorithm are multi-path routing
algorithms5. (3) Cidon et al. algorithm combines routing with
resource reservation. (4) Shi-Chou algorithm and Chen-
Nahrstedt’s selective probing algorithm require only the local
state to be maintained at each node. (5) Chen-Nahrstedt’s
iterative probing substantially reduces the routing overhead at
the cost of longer routing time.

6.3   Hierarchical routing algorithms

PNNI (Private Network-Network Interface) [19]: PNNI is a
hierarchical link-state routing protocol. Its hierarchical model
has been discussed in Section 3. We uses an example to
illustrate the routing process. The network in Figure 9 (a) has a
two-level hierarchy with three groups. The aggregated topology
maintained at A.1, B.1 and C.1 are shown in Figure 9 (b), (c)
and (d), respectively. Suppose every link has an available
bandwidth of one. Consider a connection request arriving at A.1
with a destination C.2. Let the bandwidth requirement be one.
The routing process is described as follows. Based on the
aggregated state, the source node A.1 finds a path (A.1 → A.2)
within its group and a logical path (A → B → C) on the higher
hierarchy level. The logical path, together with the destination
C.2, is sent to the next group B on the path. When the border
node B.1 receives the information, it selects a path (B.1 → B.2
→ B.3) within its group and then passes the logical path and the
destination to group C. Finally, the border node C.1 of the
destination group completes the routing by selecting C.1 →
C.2. It may happen that a link on the selected path does not
have sufficient resources. Figure 9 (e) gives an example, where
link B.3 → B.2 does not have enough bandwidth for the
connection due to traffic dynamics. In this case, the routing
process is cranked back to B.1 and resumes with an alternative
path B.1 → B.2.

7   Multicast Routing Algorithms

Most existing work on multicast routing focuses on the
following problems: (1) the bandwidth-constrained multicast
routing, (2) the delay-constrained multicast routing, (3) the
delay-constrained least-cost multicast routing (constrained
Steiner tree problem), and (4) the delay-delayjitter-constrained
multicast routing. We describe the algorithms in this section. A
summarizing comparison can be found in Table 3.

7.1   Source routing algorithms

MOSPF [36]: MOSPF is a multicast extension of the unicast
link-state protocol OSFP [37]. It was based on Deering’s work
[14]. In addition to a global state, the protocol maintains at
every node the membership information of every multicast
group in the routing domain. The group membership change in
a subnetwork is detected by a local router, and that router
broadcasts the information to all other nodes. Given the full
knowledge of network state and group membership, any node
can compute  the  shortest-path multicast tree from a source to a

                                                       
5 Search multiple paths for a feasible one.
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Figure 9:  An example of PNNI routing

heuristics for constructing a Steiner tree have a direct impact on
how to construct a constrained Steiner tree. In the following, we
briefly discuss two algorithms. A nice survey on the Steiner
problem can be found in [25].

1) Kou et al. algorithm [30]: In Kou et al. algorithm, a
network is abstracted to a complete graph, where the nodes
represent the source and the destinations, and the edges
represent the shortest paths between these nodes. The Prim’s
algorithm [44] is used to construct a minimum spanning tree in
the complete graph. Then, the Steiner tree of the original
network is obtained by expending the edges of the minimum
spanning tree into the shortest paths they represent. Any loops
caused by the expansion are removed.

2) Takahashi-Matsuyama algorithm [55]: Takahashi-
Matsuyama algorithm finds a Steiner tree by an incremental
approach called nearest destination first (NDF). Initially, the
nearest destination (in terms of cost) to the source is founded
and the least-cost path between them is selected. Then at each
iteration the nearest unconnected destination to the partially
constructed tree is found and added into the tree. This process is
repeated until all destinations are included in the tree.

Constrained Steiner tree problem      The problem of finding
a delay-bounded least-cost multicast tree, called a constrained
Steiner tree, is NP-complete [28]. Heuristic source routing
algorithms were proposed for this problem [28,53,57,60]. A
performance evaluation of these algorithms was done by
Salama et al. through the extensive simulation [48].

1) Kompella et al. algorithm [28]: A source routing heuristic
was proposed by Kompella et al. to construct a constrained
Steiner tree. The first step is to create a complete graph, where
the nodes represent the source and the destinations, and the
edges represent the delay-constrained least-cost paths between

these nodes. The link delays are assumed to be integers and the
delay constraint is assumed to be always bounded, so that such
a complete graph can be constructed in polynomial time
(Section 4.1). The second step is to construct a delay-
constrained spanning tree of the complete graph. Starting with
the source node, the tree is incrementally expanded by adding
an edge each time until every destination node is included. The
selected edge is the one which (1) connects a node in the tree
and a node outside of the tree, (2) does not violate the delay
constraint, and (3) minimizes a selection function. Two
selection functions are considered. One is simply the cost of the
edge, and the other tries to make a tradeoff between minimizing
the cost and minimizing the delay. The third step is to expend
the edges of the constrained spanning tree into the delay-
constrained least-cost paths they represent. Any loops caused
by this expansion are removed.

2) Sun-Langendoerfer algorithm [53]: Sun and
Langendoerfer proposed an algorithm which constructs an
approximated constrained Steiner tree by Dijkstra’s algorithm. It
first computes the shortest path tree in terms of cost. Namely,
the cost of every path in the tree from the source to a
destination is minimized. Then, the tree is modified to satisfy
the delay constraint. If the end-to-end delay to any destination
in the tree violates the delay constraint, the minimum-delay
path is used to replace the minimum-cost path. The advantage
of the algorithm is its low time complexity, O(v log v), which is
the same complexity of Dijkstra’s algorithm.

3) Widyono algorithm [57]: Widyono proposed several
heuristic algorithms for the constrained Steiner tree problem.
The one with the best performance is called the constrained
adaptive ordering heuristic. At each step, a constrained
Bellman-Ford algorithm is used to find a delay-constrained
least-cost path from the source to a destination that is not yet in
the tree. The found path as well as the destination is then
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inserted into the tree. The cost of links in the tree is set to zero.
The above process repeats until the tree covers all destinations.

4) Zhu et al. algorithm [60]: Zhu et al. proposed a source
routing heuristic to construct the constrained Steiner tree. The
algorithm allows variable delay bounds on destinations. A
shortest path tree in terms of delay is first constructed by
Dijkstra’s algorithm. If the delay constraint cannot be satisfied
for any destination, it must be re-negotiated. Otherwise, the
algorithm proceeds by iteratively refining the tree for lower
cost. The basic idea is to replace a path in the tree by another
path with lower cost unless such a replacement can not be
found. Figure 10 gives a replacement example. Heuristics were
proposed for finding such a replacement. The algorithm always
finds a delay-constrained tree (probably not least-cost), if one
exists, because it starts with a shortest path tree.

Rouskas-Baldine algorithm [46]: Rouskas and Baldine
proposed a heuristic for constructing a delay-delayjitter-
constrained multicast tree. The tree must have (1) bounded
delay along the paths from the source to the destinations and (2)
bounded variation among the delays along these paths. The
shortest path tree T0 in terms of delay is first constructed by
Dijkstra’s algorithm. If the tree does not meet the delay jitter
constraint, the algorithm finds out the largest-delay path in T0

from the source to a destination, and starts from the path to
incrementally construct a feasible tree. At each iteration, a
“good” path from a node in the tree to a destination out of the
tree is found and added into the tree. The path must be
completely disjoint from the tree, and must not cause the tree to
violate the constraints. The above process repeats until all
destinations are included in the tree. The authors showed that
the heuristic demonstrates good average-case behavior in terms
of the maximum inter-destination delay variation.

link state = (delay, cost)
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source node: s    destination nodes: {j, l, m, n}    delay bound: 4

Figure 10:  Solid links are in the multicast tree. Dashed
links are not in the tree. Path s → k → n in (a) is replaced by
path s → n in (b). The cost is reduced by 1.

Summary: All the above algorithms require a global state to be
maintained at every node. Most heuristic algorithms for the NP-

complete multicast routing problems construct a constrained
tree incrementally by adding one destination into the tree each
time based on certain selection criteria. Kou et al. algorithm and
Kompella et al. algorithm reduce the original problem to a
spanning tree problem by constructing a logical complete graph
among the source node and the destination nodes. Zhu et al.
algorithm iteratively refines the multicast tree by replacing
paths in the tree for lower cost. Rouskas-Baldine algorithm
constructs a multicast tree with both bounded delay and
bounded delay jitter, which is very useful in the interactive
audio-visual communication such as teleconference. Among the
four algorithms for the constrained Steiner tree problem,
Salama's simulation [48] showed that (1) Zhu et al. algorithm
achieves the best average performance in terms of minimizing
the cost of the tree, and (2) Sun-Langendoerfer algorithm has
the least execution time .

7.2   Distributed routing algorithms

Kompella et al. algorithm [29]: Kompella et al. proposed a
distributed heuristic algorithm for constructing the constrained
Steiner tree. The algorithm requires every node to maintain a
distance vector storing the minimum delay to every other node.
Starting with the source node, the algorithm constructs the
multicast tree iteratively by adding a link into the tree each
time. Each iteration of the algorithm consists of three phases of
message passing. In the first phase, the source node broadcasts
a Find message down the partially constructed tree. When a
node receives the message, it finds out the adjacent link which
(1) leads to a destination out of the tree, (2) does not violate the
delay constraint and (3) minimize a selection function. In the
second phase, the selected links are sent to the source node,
where the best link l which minimizes the selection function is
chosen. In the third phase, an ADD message is sent to add l to
the tree. This procedure continues until every destination is
included in the tree. The above algorithm requires intensive
multi-pass message exchange. The worst-case message
complexity is O(v3).

Chen-Nahrstedt algorithm [11]: Chen and Nahrstedt extended
their distributed unicast routing algorithms [11] (Section 6.2)
for multicast routing. Probes (routing messages) are flooded
from the source toward the destinations of a multicast group.
Probes proceed only along the paths which lead to at least one
destination and have sufficient resources to guarantee the end-
to-end QoS. As probes traverse toward a group of destinations,
a multicast tree is built in a distributed manner. Every node
maintains only its local state. The worst-case message
complexity is O(e) for constructing the entire tree. This
approach only works for a multicast group whose membership a
is fixed and a priori known. The dynamic membership problem
is handled by receiver-initiated probing. When a new
destination joins in a multicast group, it sends probes toward
the multicast tree. Probes proceed only along the paths which
do not violate QoS and optimization requirements. Once a
probe reaches any node in the multicast tree, a feasible
extension of the tree is found. The worst-case message
complexity of the above receiver-initiated probing is O(e) for a
single receiver.
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Carlberg-Crowcroft algorithm [9]: The spanning-joins
approach was proposed by Carlberg and Crowcroft for the
construction of multicast trees across different domains [9]. A
new group member broadcasts a join-request message. When
an on-tree node receives the message, it sends a unicast reply
message back to the new member. The path of the reply
message is determined by the existing unicast routing
algorithm. The message may collect the QoS properties and
resource availability of the path as it traverses. The new
member may receive multiple reply messages that correspond
to multiple candidate paths connecting to the multicast tree. It
selects the best path according to the QoS information carried
by the received reply messages. Reverse path multicasting, time
to live field, and directed spanning joins are used to reduce the
message overhead [9]. An excellent recent work was done by
Faloutsos et al. [17]. It improves the performance of spanning-
joins by the help of a Manager router. Based on the topology
information, the Manager router selects a subset of the on-tree
nodes to send the reply messages without the receipt of the join-
request message.

The probes in Chen-Nahrstedt algorithm are only allowed to be
sent along the paths which have sufficient resources to support
the required QoS [11]. Hence, a feasible path is determined
when a probe reaches the multicast tree. The join-request
messages in Carlberg-Crowcroft algorithm are sent along paths
which may or may not have enough resources. Hence, multiple
candidate paths are used. Reply messages are sent along them
to collect the QoS information, based on which the new
member determines whether there exists a feasible path.

Summary: Kompella et al. algorithm provides a distributed
solution to the NP-complete constrained Steiner tree problem.
Its communication overhead is high, and every node needs to
maintain a global state. Chen-Nahrstedt algorithm requires
every node to maintain only the local state. It is suitable to
construct the shortest path tree but not the constrained Steiner
tree. That is because the probes search for the shortest paths
individually without cooperation to reduce the overall cost.

8   Future Directions

Efficient routing algorithms: Most source heuristic algorithms
for the NP-complete routing problems (Figure 4) are not
scalable due to prohibitively high time complexity. That is
especially true in the case of multicast routing. New efficient
algorithms are required to make a good balance between the
computation time and the connection-success ratio, so that the
time complexity can be reduced to the shortest-path
computation range while the success ratio is still acceptable
[48].

Routing with imprecise state information: Most existing
routing algorithms assume the availability of precise state
information. However, the state information is inherently
imprecise in a distributed network environment. The
imprecision directly affects the routing performance. Therefore,

the design of routing algorithms for large networks should take
the information imprecision into consideration [12,22,32].

Distributed and Hierarchical Routing: Source routing based
on the complete global state is generally not scalable because of
the following reasons. The communication overhead to
maintain the global state is proportional to the size of the
network and the frequency of broadcasting local states. The
storage overhead to store the state is proportional to the size of
the network. The computation overhead of calculating the
feasible paths is polynomial to the size of the network and
proportional to the arrival frequency of connection requests.
The precision of the global state at a node is in inverse
proportion to the diameter of the network and the frequency of
broadcasting local states. As a network grows large, the
communication, storage and computation overhead grows
accordingly. Reducing the updating frequency does not solve
the problem because the precision of the global state will
decrease.

    Distributed and hierarchical algorithms offer solutions for the
scalability problem. In particular, the distributed algorithm
based on selective probing [11] uses only local states, and no
shortest-path computation is conducted at a single node. The
ticket-based probing algorithm [12] works with imprecise state
information, which allows relatively infrequent state updates.
The hierarchical routing provides a clean solution to the
scalability problem. It maintains an aggregate global state
whose size is logarithmic to the network size if the (logical)
nodes are clustered into groups with roughly uniform sizes.
However, the state aggregation leads to further imprecision,
especially when multiple QoS metrics are involved (Section
5.3). The design and evaluation of hierarchical routing
algorithms should take this into account.

Multipath routing: When the traffic load is light, the network
resources are readily available. The QoS routing is of less
importance in terms of searching feasible paths but of more
importance in terms of balancing the traffic. A balanced traffic
distribution helps to increase the call-admission ratio of future
connections and to improve the responsive time of the best-
effort traffic. However, when the network load is heavy and
dynamic, efficient algorithms for finding feasible paths are
critical. Multipath routing can be used to increase the
probability of accepting a connection under resource
contention. There are two interpretations for multipath routing.

    One interpretation is to search multiple paths for a feasible
one. PNNI [19] uses  crankback to search multiple paths
sequentially. When the selected path does not meet the
requirement, the routing process is cranked back and resumes
with an alternative path. This approach works well with
network dynamics. The disadvantage is longer routing time.
The parallel multipath routing was proposed to overcome this
problem [13,51]. Routing messages are sent along multiple
paths in parallel and reserve resources along the way. If more
than one message arrive at the destination, the best path is
selected and resources reserved on the other paths are released.
An alternative approach is to reserve resources only on a
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primary path. The messages sent along the other (secondary)
paths only check the resource availability. If the reservation on
the primary path fails, a secondary path is picked for resource
reservation.

    The other interpretation of multipath routing is to select a set
of paths instead of a single one for a connection. When there
does not exist a feasible path with sufficient resources, the
algorithm tries to find multiple paths whose combined resources
satisfy the requirement [4,35,45]. Transmitting contiguous data
(audio and video) along multiple paths arises the problem of
synchronization. In addition, it demands more buffer space at
the receiving end to absorb the delay jitter between different
paths.

Routing QoS and best-effort traffic: QoS traffic and best-
effort traffic co-exist in most real-world networks. A primary
task of routing is to maximize the resource efficiency, which is
measured by two goals. One goal is to maximize the number of
QoS flows that are admitted into the network. That is equivalent
to minimize the call-blocking ratio. The other goal is to
optimize the throughput and responsiveness of best-effort
traffic. The two goals may contradict each other. That is
because (1) the first goal considers only the QoS traffic, (2) the
second goal considers only the best-effort traffic and (3)
however the two types of traffic may have very different
distributions. Generally speaking, the QoS traffic will not be
affected by the best-effort traffic due to resource reservation.
However, the throughput of the best-effort traffic will suffer if
the overall traffic is misjudged. For example, links with light
QoS traffic may have heavy best-effort traffic. By many QoS
routing algorithms, these links are often considered as good
candidates for new QoS flows, which however causes the
already congested best-effort traffic even more congested.

Re-routing: There are a number of situations where re-routing
is desired. First, the routes of the connections are typically
selected based on the network resource availability at the times
when the requests arrive. Long paths are often assigned when
resource contention occurs. However, as new connections are
established and existing connections are torn down upon
completion, the network state changes locally and globally,
which makes the routes of the remaining connections less
optimal [41]. Routes with light (heavy) traffic at the beginning
may become congested (lightly loaded) later. Shorter paths for
some existing connections may become available. Re-routing
helps to balance the network traffic on the fly and improve the
resource efficiency. Second, when there does not exist a
feasible path for a new connection, instead of rejecting the
connection, it is often possible to re-route some existing
connections in order to make room for the new one. Re-routing
is especially useful when connections have different priorities.
A new connection with a higher priority will preempt the
resources held by the existing connections. Instead of throwing
the preempted connections out of the network, we can re-route
them to other paths. Re-routing should not be done too
frequently in order to avoid the excessive overhead and the
oscillation of shifting the traffic from one part of the network to
another.

Integration with other network components: Routing must
work with other network components in order to provide
guaranteed services. The design of routing algorithms must
consider how the global state is maintained, how resources are
reserved and how data packets are scheduled. Different
scheduling policies make different requirements on routing
algorithms, and often provide special properties to simplify the
routing problems [34]. For example, when the rate-based
scheduling policies are used, the end-to-end delay constraint
can be transformed into a bandwidth constraint. The following
properties are desired for the routing component in an
integrated network system.

Generality: Multimedia applications tend to have diverse QoS
requirements on bandwidth, delay, delay jitter, cost, etc. From a
network designer’s point of view, it would be beneficial to
develop a generic routing algorithm, instead of implementing
different routing algorithms for different types of QoS
requirements independently. The generic algorithm captures the
common messaging and computational structure. Various
concrete algorithms are derived from the generic algorithm by
specifying the QoS-dependent open components [11].

Extensibility: As the network infrastructure evolves and the
capacity increases, new applications are made possible. It
requires the routing algorithms to adapt in order to
accommodate new service types. It is important to design the
extensible algorithms and make them adapt to new applications,
because the networks become increasingly complex and the
deployment of new routing algorithms is very costly and
problem-prone.

Simplicity: The simplicity of a routing algorithm in terms of
time/logical complexity often allows efficient implementation,
debugging and evaluation. It also makes the algorithm easier to
be understood, maintained and upgraded.

9 Summary

The QoS routing is a key network function for the transmission
and distribution of digitized audio/video across the future high-
speed networks. It has two objectives: (1) finding routes that
satisfy the QoS constraints and (2) making the efficient use of
the network resources. Based on the way the state information
is maintained, the existing unicast/multicast routing algorithms
can be divided into three classes: (1) source routing, (2)
distributed routing and (3) hierarchical routing algorithms. The
source routing algorithms are most thoroughly investigated.
They simplify the path selection problem by locally computing
a feasible path based on a global state that is maintained at
every node. The responsibility of the path selection is shared by
intermediate nodes in the distributed routing. Most existing
distributed routing algorithms also require the maintenance of a
global state. Limited work has been done on the hierarchical
routing, especially for the NP-complete routing problems.

    The polynomial-complexity routing problems (Figure 4)
were well solved by the shortest path based algorithms.
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Heuristics were proposed for the NP-complete routing problems
with close-to-optimal results. However, there are still  problems
remaining. Most source and distributed algorithms do not scale
well due to the need of maintaining a global state. It is difficult
to keep the global state up-to-date in large networks with
dynamic data traffic. In addition, the source heuristic algorithms
often have prohibitively high time complexities, which limits
their practical values. The hierarchical routing provides a
scalable solution because the path selection is based on the
aggregated state information whose size is much reduced.
However, information imprecision is an issue of concern due to
the state aggregation. Furthermore, it is an unsolved problem to
aggregate the state of a subnet with multiple QoS metrics.
Future research should focus on efficient heuristic algorithms
for the NP-complete routing problems, state aggregation with
multiple QoS metrics, hierarchical routing with imprecise
information, multipath routing, integration of QoS routing and
best-effort routing, rerouting of dynamic traffic load, and
efficient routing algorithms based on specific network models
such as the rate-based scheduling network.
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