
Routing Traffic with Quality-of-Service Guarantees

in Integrated Services Networks

Qingming Ma
Cisco Systems, Inc.

170 West Tasman Drive
San Jose, CA 95134
qma@cisco.com

Peter Steenkiste
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

prs@cs.cmu.edu

Abstract

Transmission of interactive multimedia streams requires strin-
gent Quality-of-Service (QoS) guarantees in delay, delay jitter,
and bandwidth, which imposes strict resource constraints on
the paths being used. While the general problem of finding
a path that meets multiple QoS constraints is NP complete,
we have shown that such a path can be found in polynomial
time if the network service disciplines are rate proportional.
However, two important issues remain unsolved. One issue
is how to select among all feasible paths an efficient one that
achieves high network throughput. We identify four optimality
criteria and for each of them we propose a polynomial algo-
rithm that selects paths that meet the criterion. Our simulation
results show that, while the widest-shortest path performs best
for heavy loads, the shortest-delay path has a performance
edge for light loads. Surprisingly, the path that requires the
reservation of the smallest amount of bandwidth performs the
worst for both heavy and light loads. We also evaluate the
influence of these routing algorithms on the throughput of
best effort traffic. Our results show that, using the shortest-
widest path algorithm for routing guaranteed traffic can result
in relatively low throughput for best-effort traffic, while the
other three algorithms result in comparable performance. The
second open issue is that, although these algorithms are poly-
nomial, they have much higher computational complexity than
the Bellman-Ford algorithms used in today’s Internet. We
propose approximation algorithms that have a running time
within a constant factor of that of the Bellman-Ford algorithm
without sacrificing network throughput. Overall, the approxi-
mation algorithms that select the shortest-delay path results in
consistently high network throughput.

1 Introduction

The advent of broadband networking technology makes it fea-
sible to support real-time multimedia applications such as video
conferencing and Internet telephony. These applications have
stringent Quality-of-Service requirements (QoS) in terms of
bandwidth, delay, delay jitter, and loss rate. To provide guar-
anteed QoS, new network service models have been defined

in both the IP and ATM community [30, 1] and new resource
management mechanisms that support these service models
are being developed [6, 4, 37, 24, 35, 33, 10]. QoS routing is
one such mechanism. It has two goals: selecting feasible paths
that meet QoS constraints and making efficient utilization of
the network resources. To achieve these goals, both routing
protocols and the routing algorithms must be developed. While
QoS routing protocols have received considerable attention in
both the ATM forum and the IETF QoS Routing group, QoS
routing algorithms are not yet well understood.

Selecting a feasible path that meets multiple QoS con-
straints (e.g., delay and delay-jitter) is in general computa-
tionally intractable [7, 34]. However, this result is obtained
under the assumption that QoS constraints (e.g., delay, delay
jitter, and bandwidth) are not related and that queueing delay
is known a priori regardless of the burstiness of the traffic
source and the amount of bandwidth to reserve. In our earlier
study [22], we observed that that QoS constraints are inter-
related in a way that is determined by the network schedul-
ing discipline and that queueing delay is determined by the
amount of bandwidth to reserve and the burstiness of the traffic
source. By exploiting these dependencies in a network whose
service disciplines are rate proportional (e.g., Weighted Fair
Queueing), we developed polynomial algorithms for select-
ing feasible paths with delay, delay jitter, and bandwidth con-
straints. The resulting routing algorithms iterate the Bellman-
Ford (IBF) algorithm over the different bandwidth values of all
links in the network.

In this paper, we move further by addressing two impor-
tant issues that have not been well understood in QoS routing.
First, the IBF algorithm presented in [22] finds a feasible path
as long as it exists, but more than one feasible path is often
available. This raises the question of which feasible path to
select to achieve high network throughput. We identify four
optimality criteria that can be used when selecting an efficient
path. These criteria strike a different balance between two
competing goals: minimizing the resource consumption of in-
dividual flows and spreading the network load. Based on the
IBF algorithm, we propose routing algorithms that select paths
with these different optimality criteria. We evaluate these al-

gorithms through an extensive simulation study, using realistic
topologies, traffic models, and periodic routing information
distribution. Our evaluation uses the call blocking rate as the
primary performance metric. However, in a network that sup-
ports both guaranteed traffic and best-effort traffic, the choice
of a routing algorithm for higher priority guaranteed traffic can
influence the throughput of lower priority best-effort traffic,
since guaranteed sessions can take away resources used by on-
going best-effort traffic. The throughput for best-effort traffic
becomes a more important performance metric when the vol-
ume of guaranteed traffic is low and the call blocking rate is
not an issue. Our results show that while the widest-shortest
path algorithm performs well when the load is heavy because
it conserves resources, the shortest-delay path algorithm has a
performance edge when the load is light because it distributes
the network load more evenly than other algorithms. Sur-
prisingly, the algorithms focusing on minimizing bandwidth
reservation perform the worst.

The second issue we address in this paper is that of the
computational cost of the IBF-based algorithms: even though
they are polynomial, they considerably more complex than
the Bellman-Ford algorithm. We develop approximation algo-
ritms with a computational complexity within a constant factor
of that of the Bellman-Ford algorithm. Our simulation results
show that these approximation algorithms run almost ten times
faster than the original algorithms for an MCI Internet back-
bone topology. Most importantly, this speedup in running time
is obtained without sacrificing the network throughput. Over-
all, the approximation to the shortest delay path algorithm
performs consistently well for different topologies and traffic
loads.

These results demonstrate that QoS routing is both de-
sirable and feasible. It is desirable because using carefully
selected routes can significantly reduce the blocking rate and
improve throughput. QoS routing is also feasible because
routes that meet QoS constraints can be selected using algo-
rithms with reasonable cost, i.e. within a constant factor of the
execution times of the Bellman-Ford algorithm.

In the remainder of this paper, we first briefly review the
basic IBF algorithm of [22] that selects feasible paths for guar-
anteed traffic in polynomial time (Section 2). In Section 3 we
identify optimization criteria and present corresponding rout-
ing algorithms. Sections 5 and 6 examine the performance of
these routing algorithms, and Section 7 present and evaluate
our approximation algorithms. Related work is discussed in
Section 8 and we summarize in Section 9.

2 Selecting Feasible Paths

As discussed in [22], by exploiting the relationship between
QoS constraints introduced by the rate-proportional service
discipline, we are able to develop polynomial QoS routing
algorithms that select paths subject to delay, delay jitter, and/or
buffer space constraints. In this section, we summarize the

main results obtained in [22].

2.1 Rate-proportional Service Disciplines

A variety of service disciplines aimed at providing per-flow per-
formance guarantees have been proposed. Examples include
Virtual Clock (VC) [36], Weighted Fair Queueing (WFQ) [6,
24], Worst-case Weighted Fair Queueing (WF2Q) [2], Self
Clocked Fair Queueing (SCFQ) [9], and Frame-Based Fair
Queueing [32]. These service disciplines ensure that flows
sharing an output link get their proportional shares of the link
capacity. As a result, the end-to-end queueing delay, the de-
lay jitter, and required buffer space ineach network node is
determined by the bandwidth reserved for the flow and the
characteristics of the traffic source.

Given a pathp ofn hops with link capacityCi at hopi, and
a traffic source constrained by the leaky bucketh�; bi, where�
is the average token rate andb is bucket size, provable bound
on end-to-end delay, delay jitter, and buffer space requirements
at the h-th hop are given by [35, 33]:

D(p; r; b) =
b

r
+
n � Lmax

r
+

nX

i=1

Lmax

Ci

+

nX

i=1

propi (1)

J(p; r; b) =
b

r
+
n � Lmax

r
: (2)

B(p; b; j) = b+ h � Lmax: (3)

wherer (r � �) is the amount of bandwidth to be reserved,
Lmax is the maximal packetsize in the network, and propi is the
propagation delay. These equations relate delay, delay jitter,
and buffer space to the flow bandwidth and the leaky bucket
characterizing the traffic source.

2.2 Iterative Bellman-Ford Algorithm

The main results of [22] are summarized in the following the-
orem. We refer the reader to [22] for detailed proofs and
algorithms.

Theorem 1 The QoS routing problem of finding a path with
delay, delay-jitter,and/or buffer space constraints is solvable
in polynomial time. If the bandwidth to be reserved is known
a priori, a slightly modified version of the Bellman-Ford algo-
rithm can solve it inS = O(m �L), wherem is the number of
nodes andL the number of links in the network. If the band-
width to be reserved is unknown, an algorithm that iterates
the modified version of the Bellman-Ford algorithm can solve
it in E � S, whereE is the number of all possible residual
bandwidths of links in the network.

We briefly present the intuition behind the IBF algorithm.
The simplest case is when the amount of bandwidthr to reserve
is knowna priori. In that case, a feasible path can be found
using any shortest path algorithm by using the following link
cost function:

d(j) =
Lmax

r
+
Lmax

Cj

+ propj (4)

a. for k 1 to e do /* over different values of link residual bandwidth */
b. for h 1 tom � 1 do /* over hop count,m is the number of nodes */
c. for (x; y) 2 L do /* over all links(x; y) 2 G */
d. Relax(x; y; vk; :::)
e. /* the rest of the program */
f. return

Figure 1: A sketch of the pseudo-code for the IBF algorithm

In practice, the bandwidthr to be reserved is not known
a priori and should be determined by the routing algorithm.
This creates a dependency betweenr, the delay, and the path
being selected, and a simple shortest path algorithm no longer
works. However, it is clear that the path with the shortest
delay will be feasible, if a feasible path exists. Such a path
requires reserving the maximum reservable bandwidth (mrb)
on the path

mrbp = minfRj j j 2 pg;

to achieve the minimum delay, wherep is the path andRj the
residual bandwidth, i.e., the amount of reservable bandwidth
of link j. Note that themrbp must be equal toRj for some
j 2 p,

This observation leads to an algorithm for finding a shortest-
delay path, and thus a feasible path if one exists. The algorithm
simply iterates over all different residual link bandwidthsR in
the network. In each iteration, it assumes thatR is the amount
of bandwidth that needs to be reserved and finds the shortest-
delay path using the cost function of Equation 4. If none of
these shortest-delay paths found in each iteration is feasible, no
feasible path exists. Otherwise a solution can be found. Using
Equation 1, the algorithm determines how much bandwidth
actually needs to be reserved. If the Bellman-Ford shortest
path algorithm is used in each iteration to find the shortest-
delay path, the algorithm is called the Iterative Bellman-Ford
algorithm, or IBF algorithm. A sketch of the pseudocod for
the IBF algorithm is shown in Figure 1, where the procedure
Relax(x;y; vk; : : :) updates the paths if the distance of the cur-
rent shortest path from the source toxplus the distance between
x andy is smaller than the distance of the current shortest dis-
tance path from the source toy. If not only delay, but also jitter
and buffer size constraints have to be met, a similar algorithm
can be used. The only difference is that hop count constraints
have to be added to the algorithm to ensure the jitter and/or
buffer size constraints.

We do not consider in this paper the more general case in
which a different amount of bandwidth can be reserved on each
link. In that case, QoS routing is NP-complete [20].

3 Selecting Efficient Paths

In practice, more than one feasible path is often available.
This raises the question of what path to use to achieve higher
network throughput (or lower blocking rate). We propose four

different optimality criteria that can be used in path selection
and present polynomial routing algorithms that select paths
with these different optimality properties.

3.1 Optimality Criteria

What path selection criterion will minimize the call blocking
rate for guaranteed traffic is an open question. A first goal
could be to minimize the resource utilization of selected paths.
For guaranteed traffic, this can be achieved by selecting the
feasible path with theminimum hop count or that requires
reserving theminimal bandwidth . An alternative goal is to
try to distribute the load evenly through the network. Since
mrb can be viewed as an indication of the load conditions (for
guaranteed traffic), selecting theminimum load path, i.e. the
path with maximummrb, would emphasize distributing load
in the network. Finally, we can select a path withminimum
end-to-end delay, if themrb is reserved (this does not imply
that themrb has to be reserved). This last criterion is motivated
by the form of Equation 1: it suggests that a path with low end-
to-end delay will in general have few hops and a highmrb, so
this criterion strikes a balance between minimizing resource
use and distributing load.

Different combinations of these optimality criteria lead to
the following path selection criteria:

� Minimum-bandwidth path —a feasible path that re-
quires the reservation of the minimum amount of band-
width. If there is more than one choice, the one with the
minimum hop count is selected.

� Widest-shortest path—a feasible path with the mini-
mum hop count. If there is more than one path with
the minimum hop count, the one with the maximum
reservable bandwidth is selected.

� Shortest-widest path—a feasible path with the maxi-
mum reservable bandwidth. If there are several such
paths, the one with the minimum hop count is selected.

� Shortest-delay path—a feasible path giving the mini-
mal end-to-end delay if the maximal reservable band-
width is reserved. If there are several such paths, the one
with the minimum hop count is selected.

Clearly other path selection criteria are possible. We se-
lected these algorithms because they represent a broad spec-

minimum-bandwidth widest-shortest shortest-delay shortest-widest
 � resource conserving load distribution�!

Figure 2: Tradeoffs for path selection criteria

trum of different tradeoffs between resource conservation and
network load distribution as is shown in Figure 2.

3.2 Algorithms

We present algorithms that can identify paths that meet the
above optimality criteria. Recall that the IBF algorithm has
two levels of iterations: the outer loop (line (a) in Figure 1)
over different values of link residual bandwidth and the inner
loop (line (b) in Figure 1) over the hop count. For every value
of link residual bandwidth and every hop count, a feasible path
may be found. We store all these paths obtained in an array as
is shown below. We will now show that paths corresponding
to the different optimal criteria can be found from the feasible
paths recorded in the table.

bandwidth value hop 1 � � � hopm� 1
v1 p1;v1 pm�1;v1

� � �

ve p1;ve pm�1;ve

Theshortest-delaypath can be directly found from the table
after all iterations have been completed. To find aminimum-
bandwidth path, we compare all feasible paths in the table,
and select the one requiring the reservation of the minimum
bandwidth (use Equation 1). We claim that there is no other
path requiring less bandwidth that meets the delay bound. Let
us assume there is such a pathpx, and letrr andh be themrb
and hop count of that path. Let us comparepx with the path
pt in the entry with hop counth and bandwidthrr . Since both
paths have the same hop count and residual bandwidth, they
will have identical values for the first two terms in Equation 1.
However, sincept has a lower delay, it will have smaller values
for the last two terms thanpx, which means thatpt can meet a
given delay bound by reserving less bandwidthr. This means
thatpx must be equal topt.

To find a widest-shortest path, we can search the table
column by column in increasing order of hop count, searching
each column in decreasing order of bandwidth values. The
first feasible path found is a widest-shortest path. Similarly, a
shortest-widest pathcan be found by searching the table row
by row.

The shortest-delay path and minimum-bandwidth path al-
gorithms require that the entire table is constructed,i.e., all
iterations have to be executed. In contrast, the shortest-widest
path and the widest-shortest path algorithms can be implement
more efficiently by ordering the different bandwidth values in
decreasing order. To select a shortest-widest path, the algo-
rithm can terminate when the first feasible path is found. To

select a widest-shortest path, in addition to ordering the resid-
ual bandwidth values, we can swap the loop order in lines (a)
and (b) in Figure 1. With this slight modification, the first
feasible path found is a widest-shortest path. Figure 3 gives
pseudocode for the widest-shortest path algorithm.

4 Simulator Design

Our evaluation is based on a session-level event-driven simu-
lator, which has also been used in studying routing best-effort
traffic [23] and traffic requiring bandwidth guarantees [21].
The simulator simulates the start and termination of sessions,
and does route selection, admission control, and resource reser-
vation. To increase the level of realism, the simulator does
packet-level simulation of connection setup and tear-down,
and of routing information distribution. For connection setup
and tear-down this means that the latency of these operations
is modeled. For routing information distribution, this means
that we include both the effect of routing update overheads and
of delayed state information on performance.

The simulator uses link-state routing, and routing informa-
tion distribution is implemented using a simple reliable flood-
ing protocol similar to that used in PNNI and OSPF. The default
period is 30 seconds. It is easy to showthat static routing, while
simple, can give very poor performance for guaranteed traffic,
so we focus on dynamic routing. As a result, the routing infor-
mation includes both static topology information and dynamic
residual bandwidth and buffer space. We assume on-demand
routing with a routing cost of 10 msec, and connection set up
and tear down costs of 3 msec/how and 1 msec/hop, respec-
tively. Since the connection life times are fairly long, these
costs have little impact on the results.

We used two topologies in our simulation: an MCI topol-
ogy and a local area switched cluster topology (Figure 4). The
link propagation delay is calculated according to the physical
distance between nodes for the MCI topology.

4.1 Traffic Loads

Our traffic load consists of two classes of traffic: guaranteed
sessions and best-effort sessions, which are described below.
Clearly, many different types of traffic loads could be consid-
ered. Our evaluation shows that low bandwidth connections
(e.g. voice or small best-effort data transfers) have little im-
pact on performance, so we focus on higher-bandwidth video
connections and high bandwidth best-effort traffic.

The traffic entering the network is split between the two
traffic classes according to a predetermined ratio. The traffic

Widest ShortestPath(G : GRAPH; s : NODE; d : NODE; d : real; j : real; b : NODE! int)
1. r vec Sorting(L) /* sortRi (i 2 L) in decreasing order, delete duplicates */
2. E lenght ofr vec /* the number of different link residual bandwidth */
3. for v 2 V do /* for all nodes inG */
4. Nv b(b(v) � b)=Lmaxc /* hop count bound for nodev by buffer space */
5. max hop = max(max hop; Nv)

6. m min(jV j;max hop) /* jV j is the number of nodes inG */
7. Initialize-Single-Source(G;s; E; r vec) /* initialization*/
8. for h 1 to m � 1 do /* iteration over hop count */
9. for k 1 toE do /* iteration over different values of link residual bandwidth */
10. if (nk � h) then /* if h meets the hop count bound set byj */
11. for (u; v) 2 L do /* for all links in G */
12. Relax(u; v; k; lk; h; Nv)

13. if lk(d) � d then
14. return �k /* path found */
15. return FALSE /* no feasible path */

Initialize-Single-Source(G;s;E; r vec)
1. for k 1 to E do /* iteration over different values of link residual bandwidth */
2. nk b(r vec[k] � j � b)=Lmaxc /* bound on hop count determined byj */
3. for v 2 V do /* for all nodes inG */
4. lk[v] 1 /* for r = r vec[k] */
5. �k[v] NIL /* initialize path */
6. return

Relax(u; v; k; lk; h; Nv)

1. if Nv � h andR(u;v) � r vec[k] then /* check hop count bound and link residual bandwidth */

2. if lk [v] > lk [u] + lk(u; v) then
3. lk[v] lk[u] + lk(u; v)

4. �k[v] u /* update the path */
5. return

Figure 3: Pseudo-code for the widest-shortest path algorithm

load can be either evenly or unevenly distributed. For evenly
distributed loads, a new session selects with equal probability
any pair of switches as its source and destination. Even though
networks are typically designed to match the expected traffic
conditions, the network load can often be unevenly distributed
in the sense that the traffic load does not precisely match the
expected load, resulting in higher loads in some parts of the
network than in others. We simulate such scenarios with un-
evenly distributed load by having a percentage of the sessions
selected a source and destination from a preselected subset of
the nodes, while the rest of the sessions can still pick any node
as their source and destination.

4.2 Guaranteed Sessions

Sessions arrive according to a Poisson distribution. The arrival
rate is determined by the traffic load for all guaranteedsessions,
the mean requested bandwidth, and the mean call holding time.
The parameters for the leaky bucketh�; bi specified by the
traffic source are selected as follows. The token rate� is
uniformly distributed between 1� 5 megabits/second and
the bucket sizeb is uniformly distributed over one of the two
intervals: [4KB, 8KB] and [16KB, 20KB]. These distributions
model a combination of low and high quality video.

Most studies assume an exponential call holding time dis-
tribution but recent studies [3] show that the call holding time

distribution for conversations, facsimile, and voice mail con-
nections has a large portion of very short calls and lognormal
long-tail distributions. We follow the model suggested in [3]:
most of our simulation use a holding time distribution that is a
mixture of two normal distributions (F1 andF2) on a logarith-
mic time scale with the mixing probability�

F (x) = � � F1(x) + (1� �) � F2(x)

Finally, the traffic source of a guaranteed sessionalso needs
to specify its delay bound. We assume that the end-to-end
delay of a session is either uniformly distributed in the interval
[80ms, 120ms] or in [200ms, 240ms]. Tighter end-to-end delay
bounds require more bandwidth to be reserved. This allows
us to explore the impact of delay bound distribution on the
performance of routing algorithms.

The performance metric for guaranteed traffic is thecall
blocking rate, the percentage of sessions being rejected by the
network over the total number of arrival sessions:

Call blocking rate=
number of rejected guaranteed sessions
number of arrival guaranteed sessions

:

A guaranteed session can be rejected either because no path
with sufficient resources can be found by the routing algorithm
or because the resource availability on the selected path has
changed since the time when the routing decision was made.
We do not implement crankback.

T3

OC3

45 Mbs

100 Mbs

155 Mbs

(a) MCI topology (b) Switched cluster topology

Figure 4: Topologies used in the simulations

4.3 Best-effort Sessions

We expect that in many networks, best-effort traffic will con-
tinue to be the most dominant traffic class. In that case, the call
blocking rate can be a misleading performance metric since it
does not capture how routing algorithms for guaranteed traffic
can influence the performance of best-effort traffic. For this
reason we also examine the throughput of best-effort traffic in
a network that carries both guaranteed and best-effort traffic.

Following our earlier work in [23], a best-effort session is
specified by the number of bytes to be sent. All best-effort
sessions share unreserved link capacity according to max-min
fair share policy. This sharing policy has been adopted by
the ATM ABR service as one of its design goals for conges-
tion control mechanisms and has also been addressed for IP
networks [14, 19].

The performance metric for the best-effort sessions is the
average throughput of the best-effort sessions,weighted by the
size of the data transfer [17]:

Average throughput=
bytes sent by best�effort sessions
time used by best�effort sessions

:

5 Performance of Guaranteed Sessions

In this section, we examine the performance of the routing
algorithms described in Section 3, assuming that the network
carries only guaranteed traffic. We consider both scenarios in
which the network load is evenly and unevenly distributed.

5.1 Evenly Distributed Load

Figure 5 shows the call blocking rate as a function of the net-
work load for the MCI topology for four different combinations
of traffic burstiness and delay bounds.

We see that the performance difference between the dif-
ferent routing algorithms can be large: up to a factor of two.
We also see (comparing the top two graphs with the bottom
two graphs) that the call blocking rate is higher when the delay
bound is tighter and when the traffic is more bursty. This is to

be expected: more bandwidth has to be reserved to limit the
queueing delay. When the load is light, all algorithms except
for the minimum-bandwidth path algorithm converge quickly
and result in a zero call blocking rate.

Overall, the widest-shortest path algorithm performs better
than the other three algorithms and the minimum-bandwidth
path algorithm performs the worst. The reason is that the
widest-shortest path algorithm selects paths with as few hops
as possible to conserve resources. At the same time, it does load
balancing by selecting the widest path among all paths with the
same hop-count. On the other hand, the minimum-bandwidth
path algorithm, which also tries to conserve resources, does not
take into account the current load of the path being selected,
and may pick a loaded path, thus blocking future arrivals.
It is interesting to see that the shortest-widest path performs
reasonably well and has a performance similar to the widest-
shortest path when the delay bounds are between 200ms and
240ms. This suggests that the load is an important factor when
selecting a path. The performance for the shortest-delay path is
interesting. When the load is light, its performance converges
to that of widest-shortest path. When the load is heavy, its
performance moves close to that of minimum-bandwidth path.
This can be explained using Equation (1). When the load
is heavy, ther is small, which means thatn in the equation
weights much less thanr in determining the final end-to-end
delay. This results in selecting a path with higherr but with
more hops.

Figure 6 shows the call blocking rate for the switched clus-
ter topology. We observe similar behavior for the different
routing algorithms as for the MCI topology. The main dif-
ference is that the shortest-widest path does not perform as
well as for the MCI topology: it often is worse than the mini-
mum bandwidth path. Thus, the shortest-widest path algorithm
is more sensitive to topology changes than other algorithms,
which was also observed for best-effort traffic in [23]. The
reason is that, for the MCI topology, a shortest-widest path
is often a shortest path that consists of only OC3 links in the
topology. For the switched cluster topology, a shortest-widest

10

20

30

40

76 114 152 190 228

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

10

20

30

40

114 152 190 228 266

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

(a) b = [4KB, 8KB] andd = [80ms, 120ms] (b) b = [4KB, 8KB] andd = [200ms, 240ms]

10

20

30

40

76 114 152 190 228

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

10

20

30

40

114 152 190 228 266

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest_widest

Shortest-delay
Widest-shortest

(c) b = [16KB, 20KB] andd =[80ms, 120ms] (d) b = [16KB, 20KB] andd =[200ms, 240ms]

Figure 5: Call blocking rate as a function of network load: MCI topology, 100% guaranteed sessions, and evenly distributed load

10

20

30

40

128 160 192 224 256

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

10

20

30

40

128 160 192 224 256

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

(a) b = [4KB, 8KB] andd = [200ms, 240ms] (b) b = [16KB, 20KB] andd =[200ms, 240ms]

Figure 6: Call blocking rate as a function of network load: Switched cluster, 100% guaranteed sessions, and evenly distributed load

path is more dynamic, depending on the load of links, which often contains more hops than a shortest path.

10

20

30

40

114 152 190 228 266

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

10

20

30

40

152 190 228 266 304

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

(a) b = [4KB, 8KB] and d = [80ms, 120ms] (b) b = [16KB, 20KB] andd =[200ms, 240ms]

Figure 7: Call blocking rate as a function of network load: MCI topology, 100% guaranteed sessions, and unevenly distributed load

5.2 Unevenly Distributed Load

In Figure 7, the traffic load is unevenly distributed: 50% of
the traffic is between the West coast and East coast and the
other 50% is evenly distributed. We again see a large per-
formance difference between the different routing algorithms.
The widest-shortest path continues to perform well, although
in when the load is very light, the shortest-delay path some-
times outperform the widest-shortest path. This suggests that
using a path with the minimum hop-count may make it hard to
avoid some congested links. It also indicates the importance
of selecting an unloaded path rather than a minimum hop path
when the load is relative light. The minimum-bandwidth path
still performs badly as was the case for even traffic loads. The
shortest-widest path keeps performing inconsistently.

In summary, for evenly distributed loads,the widest-shortest
path algorithm outperforms the other three algorithms because
it tries to minimize resource use. For unevenly distributed
loads, balancing load becomes also important. The shortest-
delay path algorithm outperforms the other algorithms when
the load is light. However, when the load is heavy, conserv-
ing resources becomesmore important, and the widest-shortest
path again outperforms the others. The minimum-bandwidth
path algorithm performs poorly because it may select heavily
loaded paths, while the performance of the shortest-widest path
algorithm is very sensitive to both topology and load distribu-
tion.

The result on the widest-shortest path is different from what
we observed for best-effort traffic [23], where the shortest-
distance path algorithm has a clear performance edge over the
other algorithms. This difference is caused by the different
sharing policies of the two traffic classes. Heavily loaded
links become automatically ineligible for guaranteed sessions,
causing any dynamic algorithm to route around them. But these
links remain eligible for best-effort traffic so the algorithm has
to explicitly avoid them.

6 Performance Impact on Best-effort Traffic

In a network with both guaranteed traffic and best-effort traffic,
what path is used for guaranteed traffic can have a significant
impact on the performance of best-effort traffic. Thus, it is
important to understand this performance impact on best effort
traffic before adopting a routing algorithm for guaranteed traf-
fic. For example, when the guaranteed traffic load is relatively
low compared to the network capacity, the call blocking rate
for guaranteed traffic is likely to be zero, regardless of what
routing algorithm is used. In such cases, the throughput for
best-effort traffic is the main performance metric distinguish-
ing the routing algorithms for guaranteed traffic.

In this section, we examine the throughput of best-effort
sessions in networks supporting both guaranteed traffic and
best-effort traffic, for different path selection algorithms for
guaranteed traffic. We assume that the best-effort sessions
share the unreserved link capacity according to the max-min
fair sharing policy defined in [16]. The algorithm used for best-
effort sessions is the shortest distance path with the distance
for a path defined as

dist(P) =
kX

i=1

1
ri

whereri is the max-min fair share rate a new best-effort session
will obtain [23].

6.1 Evenly Distributed Load

We first consider the scenarios that the traffic load is evenly
distributed. The total traffic load is split between guaranteed
sessions and best-effort sessions, with 40% of the traffic for
guaranteed sessions. Figure 8 shows the average throughput of
the best-effort sessions as a function of the total network load.
We assume that up to 90% of the capacity of each link can be

1

2

3

4

5

133 152 171 190 209

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
B

/s
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

1

2

3

4

5

133 152 171 190 209

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
B

/s
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

(a) b = [4KB, 8KB] andd = [80ms, 120ms] (b) b = [16KB, 20KB] andd =[200ms, 240ms]

Figure 8: Average throughput as a function of network load: MCI topology, 40% guaranteed sessions, evenly distributed load, and
90% reservation rate

reserved for guaranteed sessions. Overall, all four routing al-
gorithms have a similar performance impact on best-effort ses-
sions, although the minimum-bandwidth path performs slightly
better than the others. However, this slight performance advan-
tage is achieved at the cost of more guaranteed sessions being
blocked. Table 1 shows the call blocking rate for guaranteed
sessions. A much higher call blocking rate is observed when
the minimum-bandwidth path is used, which is not surprising
given the results in the previous section.

Figure 9 shows the throughput for best-effort traffic for the
switched cluster topology. For all traffic loads in the figure,
no guaranteed sessions are blocked. What is surprising is that
the shortest-widest path performs much worse than the three
other algorithms. This is suggests that, for a more symmet-
ric network topology, applying the shortest-widest path algo-
rithms for guaranteed sessions can cause much higher resource
consumption, therefore leaving fewer resources for best-effort
sessions. This again demonstrates that the performance of the
shortest-widest path is inconsistent.

6.2 Unevenly Distributed Load

We next look at unevenly distributed loads. Figure 10 shows
the impact of different routing algorithms on the performance
of the best-effort sessions for the MCI topology, and Table 2
shows the call blocking rate for the guaranteed sessions. We
see again that the shortest-widest path algorithm takes away
more resource from best-effort sessions, especially when the
load is heavy. The minimum-bandwidth path blocks more
guaranteed sessions although its performance impact on best-
effort sessions is close to that of the shortest-delay path and
the widest-shortest path algorithms. Non-zero call blocking
rates are also observed for the widest-shortest path algorithm
because of its limited ability to balance the network load. The
shortest-delay path has overall the best performance: no guar-

anteed sessions are blocked and best-effort sessions achieve a
high average throughput.

In summary, the shortest-widest path algorithm tends to
select resource-intensive paths for guaranteed sessions, which
reducesthe throughputof the best-effort traffic. The other three
routing algorithms result in better and similar performance for
the best-effort traffic.

7 Approximation Algorithms

In this section, we present approximation algorithms for the
routing algorithms discussed in previous sections and evaluate
their performance both in terms of running time and in terms
of network throughput.

7.1 Algorithms

In the previous sections, we evaluated the performance of four
routing algorithms both in terms of the call blocking rate and
in terms of the average throughput of the best-effort sessions.
These algorithms have a running timeO(m � e � E), where
m is the number of nodes,e the number of different values
of link residual bandwidth, andE the number links in the
network. In the worst case,e is equal toE, and the running
time isO(m � E2). We observe in our simulations that this
worst case is fairly common, since the residual bandwidth of
two links will usually be different, although the difference
may be small. The algorithms have to iterate over all these
very similar but different bandwidth values. We recall that the
original motivation for iterating the Bellman-Ford algorithm
over all possible values of the link residual bandwidth was to
ensure that no path with the shortest delay is missed, regardless
of the amount of bandwidth that has to be reserved.

A first optimization is to use a small set of residual band-
widths, and to approximate the residual bandwidth of each link

Traffic load (MB/s) 133 152 171 190 209
Minimum-bandwidth 0.06 0.13 0.08 1.44 3.68

Shortest-widest 0.00 0.00 0.00 0.01 0.07
Shortest-delay 0.00 0.00 0.00 0.01 0.22
Widest-shortest 0.02 0.03 0.03 0.04 0.13

(a) b = [4KB, 8KB] andd =[80ms, 120ms]

Traffic load (MB/s) 133 152 171 190 209
Minimum-bandwidth 0.00 0.00 0.01 0.08 0.78

Shortest-widest 0.00 0.00 0.00 0.00 0.01
Shortest-delay 0.00 0.00 0.00 0.00 0.01
Widest-shortest 0.00 0.00 0.00 0.00 0.04

(b) b = [16KB, 20KB] andd =[200ms, 240ms]

Table 1: Call blocking rate in percentage: MCI topology, 40% guaranteed sessions, evenly distributed load, and 90% reservation
rate

1

2

3

4

128 144 160 176 192

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
B

/s
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

Figure 9: Average throughput as a function of network load: Switched cluster, 60% best-effort, 90% link-capacity reservation,
evenly distributed load, b = [16KB, 20KB], and d =[200ms, 240ms]

by rounding down to one of these values. We can then iter-
ate the Bellman-Ford algorithm over this smaller set of values,
which enables us to eliminate iterations over close but different
residual bandwidth values. A second optimization is to limit
the amount of bandwidth that a flow can reserve. In prac-
tice, one would expect that for a given token rate, reserving
bandwidth higher than a certain threshold will never result in
acceptable network performance. For example, if the token
rate of a flow is 5 Mb/s, the network should not reserve more
than 25 Mb/s of the link bandwidth in order to achieve a delay
bound.

Our approximation algorithms select a set of bandwidth
valuesV = fv1; : : : ; vng such thatv1 > : : : > vn. The value
v1 is the maximal bandwidth that can be reserved. For every
link, we round its residual capacityv to the largestvi such that
vi � v. The Bellman-Ford algorithm is iterated only over the
valuesvi. For each iteration, it assumes that the valuevi is the
reservable bandwidth.

The selection of the setV depends on the link capacity and
the distribution of bandwidth requests. In order to select as few
values as possible without eliminating many potential feasible
paths from consideration, a heuristic is to reduce the distance
between two consecutive values as the values decrease. This
allows us to mimic logarithmic distance between two consec-
utive values. In our simulation, we select the following 14
values:

V = f24;20;16;14;12;10;8;7;6;5;4;3;2;1g

In this example, 24 is the maximum bandwidth considered.
Once the values ofV are selected, the worst case running time
of the iterative Bellman-Ford algorithm isO(jV j�m�E), where
jV j is a constant. In other words, the approximation algorithms
will have running times that differ from the Bellman-Ford al-
gorithm times by up to a constant factor.

1

2

3

4

5

171 190 209 228 247 266 285

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
B

/s
)

Traffic Load (MB/s)

Minimum-bandwidth
Shortest-widest
Shortest-delay

Widest-shortest

Figure 10: Average throughput as a function of network load: MCI topology, 40% guaranteed sessions, 90% link-capacity
reservation, unevenly distributed load, b = [16KB, 20KB], and d =[200ms, 240ms]

Traffic load (MB/s) 209 228 247 266 285
Minimum-bandwidth 0.00 0.00 0.07 0.23 1.17

Shortest-widest 0.00 0.00 0.00 0.00 0.00
Shortest-delay 0.00 0.00 0.00 0.00 0.00
Widest-shortest 0.00 0.00 0.06 0.10 0.19

b = [16KB, 20KB] andd =[200ms, 240ms]

Table 2: Call blocking rate: MCI topology, 40% guaranteed sessions, unevenly distributed load, and 90% reservation rate

7.2 Performance on Network Throughput

The simulation results in Sections 5 and 6 show that the
shortest-widest path and the minimum-bandwidth path per-
form inconsistently for different topologies because they put
either too much weight on balancing the network load or on
bandwidth consumption. Thus we focus our evaluation on
the approximation algorithms for the shortest-delay and the
widest-shortest path.

Figures 11 and 12 show for the MCI topology the per-
formance difference between the widest-shortest path and the
shortest-delay path algorithms, and their approximations, for
even and uneven traffic loads respectively. We see that the call
blocking rates for the widest-shortest path and its approxima-
tion are very similar, while the approximation algorithm for the
shortest-delay path performs better than the original “correct”
algorithm. This result is somewhat unexpected. Further analy-
sis shows that the improvement is not causedby the limit on the
reserved bandwidth, since the exact algorithms rarely allocate
high bandwidth anyway. Instead the performance improve-
ment is the result of the use of bandwidth intervals. Recall
that the end-to-end delay (see Equation 1) is a function of
the hop count and reservable bandwidth. By using bandwidth
intervals, we reduce the reservable bandwidth to its closest
discrete interval value and equalize the link bandwidths with
small differences, which leads the shortest-delay path algo-

rithm to select paths with fewer hops, and therefore, to place
more emphasis on conserving network resources. When the
load is heavy, the reservable bandwidth is small, and reducing
the bandwidth is likely to have a bigger impact. However, the
approximation scheme has little impact on the widest-shortest
path algorithm. The reason is that it is already very biased
towards minimizing resource utilization.

Figure 13 shows similar results for the switched cluster
topology. Again, the heuristic for the shortest-delay path algo-
rithm performs better than the original algorithm, although it
does not perform as well as the widest-shortest path algorithm
for this scenario. The reason is that in this fairly symmetric
topology conserving resources is more important than balanc-
ing the load, since the load is already fairly evenly distributed.

7.3 Running Time

An important performance issue for routing is the running time
of the path selection algorithm. Our performance metric is the
average algorithm running time in our simulation:

Average running time=
time used by routing algorithm

number of flows
:

We compare the average time of the approximation algorithms
and the original iterative Bellman-Ford algorithms. The mea-
surements were carried out on a DEC Alpha Station 255. Fig-
ure 14 shows the time (in milliseconds) needed for both the

10

20

30

40

76 114 152 190 228

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Widest-shortest
Approx. Widest-shortest

Shortest-delay
Approx. Shortest-delay

10

20

30

40

110 150 190 230 270

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Widest-shortest
Approx. Widest-shortest

Shortest-delay
Approx. Shortest-delay

(a) b = [4KB, 8KB] & d = [80ms, 120ms] (b) b = [16KB, 20KB] & d = [200ms, 240ms]

Figure 11: Call blocking rate as a function of network load: MCI topology, 100% guaranteed sessions, and evenly distributed load

10

20

30

40

114 152 190 228

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Widest-shortest
Approx. Widest-shortest

Shortest-delay
Approx. Shortest-delay

10

20

30

40

152 190 228 266 304

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Widest-shortest
Approx. Widest-shortest

Shortest-delay
Approx. Shortest-delay

(a) b = [4KB, 8KB] & d = [80ms, 120ms] (b) b = [16KB, 20KB] & d = [200ms, 240ms]

Figure 12: Call blocking rate as a function of network load: MCI topology, 100% guaranteed sessions, and unevenly distributed
load

original and approximation algorithms for the widest-shortest
path and the shortest-delay path. We see that the approxima-
tion algorithms outperform the original algorithms by as much
as a factor of eight. Moreover, we see that the widest-shortest
path algorithm and its approximation run 18% faster than the
shortest-delay path and its approximation, respectively. The
significant improvement on the running time of our approxi-
mation algorithms comes from eliminating iterations over dif-
ferent but similar values of the link residual bandwidth.

8 Related Work

Many studies in the literature have addressed different aspects
of QoS routing. A good introduction to QoS routing and
existing routing techniques can be found in [18, 31]. Trunk
Reservation and Dynamic Alternative Routing [8], and Least

Load Routing [13] are some of the algorithms that have been
studied in telecommunications networks. In [5], a QoS based
routing framework is defined and many challenging questions
are raised.

Several studies have investigated routing algorithmic prob-
lems associated with QoS routing. In [7, 34], it is shown that
the QoS routing problem of finding a path satisfying both delay
and delay-jitter constraints is NP-complete. Jaffe and Salama
studied [15, 29] heuristics to tackle the NP-problem of routing
with two additive constraints. Przygienda suggested in [26]
the use of cost vectors to solve the NP-complete by associat-
ing a priority to each constraint. Rampal [27] evaluated the
performance of several path selection algorithms under the as-
sumption of three different scheduling algorithms. The IBF
algorithm that is used in this paper was first described in [22].
Zhao and Tripathi in [38] proposed a similar algorithm, but is-

10

20

30

40

128 160 192 224 256

C
al

l B
lo

ck
in

g
R

at
e

(%
)

Traffic Load (MB/s)

Widest-shortest
Approx. Widest-shortest

Shortest-delay
Approx. Shortest-delay

Figure 13: Call blocking rate as a function of network load: Switched cluster, 100% video traffic, evenly distributed load, b =
[16KB, 20KB], and d = [200ms, 240ms]

50

100

150

200

250

300

350

114 152 190 228 266

R
un

ni
ng

 T
im

e
(m

ill
is

ec
.)

Traffic Load (MB/s)

Shortest-delay
Widest-shotest

Approx. Shortest-delay
Approx. Widest-shotest

Figure 14: Average running time as a function of network load: MCI topology, 100% guaranteed sessions, 90% link-capacity
reservation, unevenly distributed load, b = [16KB, 20KB], and d =[200ms, 240ms]

sues related to selecting efficient paths and resource utilization
efficiency are not addressed. Several people have presented
algorithms that address a subset of the problems associated
with routing guaranteed traffic. In [28], routing algorithms
for achieving the shortest delay when moving a burst of bytes
are proposed. In [25], QoS routing algorithms are studied
for finding the shortest-delay path when the network employs
the weighted fair queueing service discipline. In [11], QoS
routing algorithms for a network with inaccurate link-state in-
formation are explored. Guerin, Orda, and Williams outlined
in [12] how OSPF can be extended to QoS routing, using the
widest-shortest feasible paths, but no performance evaluation
is provided. QoS routing algorithms for traffic requiring band-
width guarantees are addressed in [21] and related work can
be found there.

In contrast to the previous studies, we present not only a
complete set of QoS routing algorithms for traffic with delay,

delay jitter, and buffer space constraints with a variety of op-
timality criteria, but also approximation algorithms that run
significantly faster than the original algorithms without sacri-
ficing resource utilization efficiency. We also present a detailed
performance evaluation of four different algorithms, consider-
ing both call blocking rate and impact on best-effort traffic as
performance metrics.

9 Conclusion

In order to support applications with stringent QoS require-
ments such as interactive continuous media applications, both
the ATM and IP community have defined "guaranteed" service
classes that provide per-flow guarantees for delay, delay-jitter,
and loss rate. QoS routing is one of important resource man-
agement components that support QoS in integrated services
networks.

In this paper we address two important issues related to
achieving resource efficiency while selecting feasible paths
and the effectiveness and practicality of routing algorithms.
To achieve low blocking rates, we identified four optimization
criteria that place a different emphasis on minimizing resource
utilization and balancing the load in the network. Based on
the IBF algorithm, we developed path selection algorithms
that select paths with these different criteria. The performance
of these routing algorithms is evaluated through an extensive
simulation study, using realistic topologies, traffic models, and
periodic routing information distribution. Unlike telecommu-
nication networks, multiple classesof service will be supported
in data networks. Our performance evaluation considers not
only the blocking rate for guaranteed traffic but also the in-
fluence on the throughput of best-effort traffic. Our results
show that the performance gap for these different algorithms is
large and both conserving resources and balancing the network
load are necessary to achieve high network throughput. The
widest-shortest path algorithm performs well for heavy load
because it conserves resources, but the shortest-delay path has
a performance edge for light load because it balances the load
better. Surprisingly, the minimum-bandwidth path algorithm
has the worst performance because it is not very sensitive to
load, and can easily saturate some links while other parts of
the network are underutilized.

Even though the IBF algorithms are polynomial, their com-
putational complexity is significantly higher than that of the
Bellman-Ford algorithm. We develop approximation algo-
rithms that runs almost ten times faster than the exact iterative
Bellman-Ford algorithm for an MCI backbone topology. The
simulation results show that there is no loss in routing accuracy
and network throughput. Overall, the approximation algorithm
for the shortest-delay path performs consistently well.

Our results demonstrate that QoS routing is both desirable
and feasible. It is desirable because using carefully selected
routes can significantly reduce the blocking rate and improve
throughput. QoS routing is also feasible because routes that
meet QoS constraints can be selected using algorithms with
reasonable cost, i.e. within a constant factor of the execution
times of the Bellman-Ford algorithm. The routing information
needed is link residual bandwidth and link propagation delay.

Acknowledgements

This research was sponsored by the Defense Advanced Re-
search Projects Agency monitored by Naval Command, Con-
trol and Ocean Surveillance Center (NCCOSC)under contract
number N66001-96-C-8528.

References

[1] ATM Forum Traffic Management Specification Version
4.0, October 1995. ATM Forum/95-0013R8.

[2] J.C.R. Bennett and H. Zhang.WF 2Q: Worst-case Fair
Weighted Fair Queueing. InProceedings of IEEE INFO-
COM’96, May 1996.

[3] V.A. Bolotin. Modeling Call Holding Time Distribu-
tions for CCS Network Design and Performance Analy-
sis. IEEE JSAC, 12(3):433–438, April 1994.

[4] David Clark, Scott Shenker, and Lixia Zhang. Support-
ing Real-Time Applications in an Integrated Services
Packet Network: Architecture and Mechanism.ACM
SIGCOMM 92, August 1992.

[5] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A
Framework for QoS-based Routing in the Internet.IETF
Internet Draft <draft-ietf-qosr-framework-01.txt>, July
1997.

[6] A. Demers, S. Keshav,and S. Shenker. Analysis and Sim-
ulation of a Fair Queueing Algorithm.ACM SIGCOMM
89, 19(4):2–12, August 19-22, 1989.

[7] M. R. Garey and D. S. Johnson.Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York, 1979. (page
214).

[8] R.J. Gibbens, F.P. Kelley, and P.B. Key. Dynamic Alter-
native Routing — Modelling and Behaviour. InProceed-
ings of the 12th International Teletraffic Congress, June
1988.

[9] S. Golestani. A Self-Clocked Fair Queueing Scheme
for Broadband Applications. InProceedings of IEEE
INFOCOM’94, pages 636–646, Toronto, Canada, June
1994.

[10] P. Goyal and H.M. Vin. Generalized Guaranteed Rate
Scheduling Algorithms: A Framework. Technical Re-
port Technical Report TR95-30,Department of Computer
Science, UT Austin, Texas, 1995.

[11] R. Guerin and A. Orda. QoS-based Routing in Networks
with Inaccurate Information: Theory and Algorithms. In
Proc. IEEE INFOCOM’97, 1997.

[12] R. Guerin, A. Orda, and D. Williams. QoS Rout-
ing Mechanisms and OSPF Extensions.IETF Internet
Draft <draft-guerin-qos-routing-ospf-00.txt>, Novem-
ber 1996.

[13] S. Gupta, K.W. Ross, and M. El Zarki. On Routing in
ATM Networks. In M. Steenstrup, editor,Routing in
Communications Networks, pages 49–74. Prentice Hall,
1995.

[14] E. Hahne. Round-Robin Scheduling for MaxMin Fairness
in Data Networks.IEEE Journal on Selected Areas in
Communications, 9(7), September 1991.

[15] J. Jaffe. Algorithms for Finding Paths with Multiple
Constraints.Networks, 14(1):95–116, Spring 1984.

[16] J.M. Jaffe. Bottleneck flow control.IEEE Transactions
on Communications, COM-29(7):954–962, July 1981.
Correspondence.

[17] R. Jain. The Art of Computer Performance Analysis.
Wiley, 1991.

[18] W.C. Lee, M.G. Hluchyj, and P.A. Humblet. Routing
Subject to Quality of Service Constraints in Integrated
Communication Networks.IEEE Network, 9(4):14–16,
July/August, 1995.

[19] D. Lin and R. Morris. Dynamics of Random Early Detec-
tion. In ACM SIGCOMM ’97, pages 115–126, Cannes,
France, Sepetember 1997.

[20] Q. Ma. Quality of Service Routing in Integrated Services
Networks. PhD thesis, Department of Computer Science,
Carnegie Mellon University, 1998.

[21] Q. Ma and P. Steenkiste. On Path Selection for Traffic
with Bandwidth Guarantees. InIEEE International Con-
ference on Network Protocols, Atlanta, Georgia, October
1997.

[22] Q. Ma and P. Steenkiste. Quality-of-Service Routing
for Traffic with Performance Guarantees. InIFIP Fifth
International Workshop on Quality of Service,pages 115–
126, NY, NY, May 1997.

[23] Q. Ma, P. Steenkiste, and H. Zhang. Routing High-
Bandwidth Traffic in Max-Min Fair Share Networks. In
ACM SIGCOMM ’96, pages 206–217, Stanford, CA, Au-
gust 1996.

[24] A. Parekh and R. Gallager. A Generalized Processor
Sharing Approachto Flow Control-the Single Node Case.
IEEE/ACM Transactions on Networking, 3(1):344–357,
June, 1993.

[25] C. Pornavalai, N. Shiratori, and G. Chakraborty. QoS
Based Routing Algorithm in Integrated Services Packet
Networks. InIEEE International Conferenceon Network
Protocols, Atlanta, Georgia, October 1997.

[26] A. B. Przygienda.Link State Routing with QoS in ATM
LANs. PhD thesis, Dipl. Inf. Ing. ETH, 1995.

[27] S. Rampal.Routing and End-toend Quality of Service in
Multimedia Networks. PhD thesis, North Carolina State
University, August, 1995.

[28] J.B. Rosen, S.Z. Sun, and G.L. Xue. Algorithms for
the Quickest Path Problem.Computers and Operations
Research, 18(6):579–584, 1991.

[29] H.F. Salama, D.S. Reeves, and Y. Viniotis. A Distributed
Algorithm for Delay-Constrained Routing. InProceed-
ings of IEEE INFOCOM’97, Kobe, Japan, April 1997.

[30] S. Shenker, C. Partridge, and R. Guerin. Specifica-
tion of Guaranteed Quality of Service.IETF Internet
Draft <draft-ietf-intserv-guaranteed-svc-07.txt>, Febru-
ary 1997.

[31] M. Steenstrup.Routing In Communications Networks.
Prentice Hall, Englewood Cliffs, NJ 07362, 1995.

[32] D. Stiliadis and A. Varma. Frame-based Fair Queueing: A
New Traffic Scheduling Algorithm for Packet-Switched
Networks. InACM SIGMETRICS 96, Philadelphia, PA,
May 1996.

[33] D. Stiliadis and A. Varma. A General Methodology for
Designing Efficient Traffic Scheduling and Shaping Al-
gorithms. InProceedings of IEEE INFOCOM’97, Kobe,
Japan, April 1997.

[34] Z. Wang and J. Crowcroft. Quality-of-Service Routing
for Supporting Multimedia Applications. IEEE JSAC,
14(7):1288–1234, September 1996.

[35] H. Zhang. Service Disciplines for Guaranteed Perfor-
mance Service in Packet-Switching Networks.Proceed-
ings of the IEEE, 83(10), October 1995.

[36] L. Zhang. Virtual Clock: A New Traffic Control Algo-
rithm for Packet Switching Networks.SIGCOMM 90,
pages 19–29, 1990.

[37] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. RSVP: A New Resource Reservation Protocol.
IEEE Communications Magazine, 31(9):8–18, Septem-
ber 1993.

[38] W. Zhao and S. Tripathi. Routing Guaranteed Quality of
Service Connections in Integrated Services Packet Net-
works. In IEEE International Conference on Network
Protocols, Atlanta, Georgia, October 1997.

