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Abstract— This paper investigates the problem of routing flows with routed, etc. Each of these criteria can influence the outcome of
Quality-of-Service (QoS) requirements through one or more networks, the path selection process, e.g., the network may identify apath

when the information available for making such routing decisions is inac- . . .
curate. Inaccuracy in the information used in computing QoS routes, e.g., capable of satisfying the requirement of the flow, but decide not

network state such as link and node metrics, arises naturally in a number of t0 Use it becauseit istoo expensivein terms of the amount of re-
different environments that are reviewed in the paper. Our goal is to deter- sources being consumed. This paper does not attempt to address

mine the impact of such inaccuracy on the ability of the path selection pro- : AT
cess to successfully identify paths with adequate available resources. In par—a” these issues. Instead, we focus on the aspect of fmdmga path

ticular, we focus on devising algorithms capable of selecting path(s) that are Capable of satisfying the requirements of a new flow. However,
most likely to successfully accommodate the desired QoS, in the presence ofye believe that such criteria can often be either handled after a

uncertain network state information. For the purpose of our analysis, we path has been selected or di rectly incorporated into the mode
assume that this uncertainty is expressed through probabilistic models, and

we briefly discuss sample cases that can give rise to such models. We esta¥V© devel op in the.paper for path selection. We briefly touch on
lish that the impact of uncertainty is minimal for flows with only bandwidth  this aspect in Section V.

requirements, but that it makes path selection intractable when end-to-end S __—
delay requirements are considered. For this latter case, we provide efficient  YWhen considering the task of finding a path capable of ac-

solutions for special cases of interest and develop useful heuristics.
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|. INTRODUCTION
A. Motivations and Results Overview

QoSrouting is one of the tools available to network operators
to improvetheir ability to accommodate flows which expect cer-
tain QoS guarantees from the network. Specifically, QoS rout-
ing enables a network operator to identify, for every new flow,
a path through the network, that has sufficient resources to meet
the flow’s requirements (see [1], [2] for examples). These re-
quirements are typically in the form of bandwidth or end-to-end
delay guarantees, so that identifying a path capable of meeting
them implies some knowledge of the availability of resources
throughout the network.

For purposes of clarity, we assume in the paper an environ-
ment where a source node is presented with a request to estab-
lish anew flow with specific QoS requirements, e.g., bandwidth
or end-to-end delay, and is responsiblefor finding a suitable path
to the destination. In other words, we consider a (loose) source
routing model* as in [1], [4]. In addition, we follow the link
state model of [1], [2], [4], where a network topology database
is availablethat keeps state information about nodesand linksin
the network. Thisinformation isthen used by the path selection
process, to identify paths with sufficient resources to accommo-
date the regquirements of new flows.

It should be noted that in addition to just finding a path with
sufficient resources, there are other criteriathat a network oper-
ator may want to consider. For example, it may want to optimize
network utilization, carried load, number of flows successfully
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L Asdiscussed in [2], ahop-by-hop model can also be considered, but requires
additional care to avoid loops (see [3] for adiscussion of thisissue).

commodating a new request, it is important to realize that this
ability is very much dependent on the accuracy of the informa-
tion specifying the avail ability of network resources (see[5], [6]
for examples of this sensitivity). Unfortunately, there are many
reasons for why this information may be inaccurate, and we re-
view several of them later in this section. Our main concernis,
therefore, with the impact of inaccurate state information in the
topology database used by path selection. Asisto be expected,
thisimpact depends on the kind of QoS requirements expressed
by anew flow. In particular, it seemsintuitive that so called bot-
tleneckrequirements such as bandwidth, i.e., a certain amount
of bandwidth is required on each link, would react differently
to inaccuracy than additivereguirements such as end-to-end de-
lay. Asaresult, weinvestigate separately the cases of flowswith
bandwidth requirements and of flows which request a bound on
their end-to-end delay.

For both, our focus is on finding “good” paths, i.e., paths
with enough resources to accommodate new requests, despite
the possihility that the state information in the topol ogy database
may not accurately reflect the actual availability of resources. In
other words, the criterion we use to assess the goodness of a
path is the likelihood it will have sufficient resources to accom-
modate a new flow. In that context, we deem the best possible
path to be the one most likelyto have the necessary resources.
In order to asses such path qualities, a source node needs to
associate some stochastic behavior, namely probability distribu-
tion functions (p.d.f.’s) to a performance metric associated with
the various network components. However, it is important to
understand that this does not imply that p.d.f.’s are necessarily
advertisedby the network nodes, as part of the link-state pro-
tocol; rather, a source node may constructthe p.d.f.'s, based on
the (standard) advertised parameters and some knowledge of the
characteristics and possible range of their inaccuracy.

For flows with bandwidth requirements, we show that under
certain assumptions on how inaccuracy in network state infor-
mation is represented, this best possible path can be computed
using relatively standard algorithms. In the case of flowswhich
request end-to-end delay bounds, the situation is unfortunately



not as favorable, and we establish a number of intractability re-
sults when it comes to computing the path most likely to meet a
given end-to-end delay bound. As aresult, we then investigate
several approximations, special cases of interest, and heuristics.
We do so in the context of two different modelsfor the provision
of end-to-end delay bounds, and develop separate solutions for
each.

First, we focus on a model that assumes the “rate-based” ap-
proach of [7] for providing end-to-end delay bounds to flows.
This model essentially amounts to coupling delay and band-
width guarantees, i.e., providing a bound on the queuing delay
experienced by the packets of a flow is accomplished by ensur-
ing a minimum service rate to the flow. Such a model imposes
additional constraints on network nodes as it mandates the use
of schedulers capable of enforcing relatively strict rate guaran-
tees. However, it also means that rate (bandwidth) is the main
network resource whose state needs to be considered when com-
puting a path. As we shall see, this simplifies, to some extent,
the path computation process, so that tractable solutions can be
provided in a number of interesting cases.

Next, we extend our investigation to a second model, a
“delay-based” model, where end-to-end delay bounds are now
guaranteed by concatenating local delay guarantees provided at
each node/link on the path of aflow. This model is consistent
with the service and signaling specifications of [1], [8], [9]. The
reliance on local delay guarantees for providing end-to-end de-
lay bounds affects the nature of the network state information
that needs to be provided, asit must now include theloca delay
guarantees that each node/link can provide. Thisin turn affects
the path computation process, and as we will again see, makes
it typically more difficult to find the best feasible path than with
the rate-based model.

B. Sources of Inaccuracy in Network State Information

As mentioned earlier, QoS routing relies on state information
specifying resource availability at network nodes and links, and
uses it to find paths with enough free resources to accommodate
new flows. In turn, the successful routing of new flows together
with the termination of existing ones, induce constant changes
in the amount of resources available. These must then be com-
municated back to QoS routing to ensure it makes its decision
based on correct information. Unfortunately, communicating
such changesin atimely fashion is expensive and, at times, not
even feasible [6], [10]. As aresult, changes in resources avail-
ability are usually communicated either infrequently, e.g., only
when they are big enough, or imprecisely, e.g., after aggregating
network states.

Such limitations can introduce substantial inaccuracy in the
information used by path selection to identify good paths
through the network, and, as stated before, this is the problem
we want to address in the paper. However, before we proceed
with our investigation, we briefly review some of the underly-
ing parameters that determine the extent of inaccuracy we can
expect in network state information. There are two main com-
ponents to the cost of timely distribution of changesin network
state: the number of entities generating such updates, and the
frequency at which each entity generates updates.

Limiting the number of entities (nodes and links) generating
updates on their state, is a generic scalability issue that is not
specific to QoS routing. Indeed, as network sizes grow, scalabil-
ity quickly becomes a generic concern that has been the source
of the many hierarchical schemes in use by network protocols.
Two good examples are provided by the OSPF [11] and PNNI
[1] protocols. OSPF supports a two-level hierarchy, with differ-
ent granularity in terms of topology and routing information for
each level. In particular, detailed information about topology
and routes is available within an area, while only much coarser
information is available about the “ backbone” and remote areas.
The PNNI protocol generalizesthis concept to an arbitrary num-
ber of levels, and defines a progressive aggregation procedure
that combines multiple networksinto single “nodes’ as they get
more remote.

These various aggregation steps abstract multiple physical
nodes and links into a much smaller number of logical entities.
As aresult, information about the state of individual nodes and
linksis often lost. For example, the PNNI standard outlines sev-
eral possible approachesfor aggregating an entire network into a
single node, where the metrics, e.g., available bandwidth, asso-
ciated with the aggregate node are typically obtained by “aver-
aging” corresponding individual metrics. Thisloss of accuracy
in state information can have a substantial impact on the path
selection process. For example, the knowledge that a remote
network, or set of networks, has an amount B of available band-
width, must be interpreted only as an indication that if a flow
requests that amount, it is likely to be accepted. Thisis because
the quantity B is now only a summary of the amount of band-
width actually available on the many different paths across this
remote network.

For path selection, the main consequence of thisloss of accu-
racy in network state information, is that it now needs to con-
sider not only the amount of resources that are available, but
also the level of certainty with which these resources are indeed
available. For example, a link which guaranteeslO Mbps of
available bandwidth may be more desirable than one which ad-
vertises20 Mbps based on some average computed over mul-
tiple different paths. Again, our god is to identify the path
most likely to accommodate the requirements expressed by a
new flow.

The second contributor to the cost of maintaining accurate
state information is the frequency of state changes, and there-
fore updates. Specifically, each advertisement of a state change
consumes both network bandwidth on all the links over which it
is sent, and processing cycles at all nodes where it is received.
Keeping this overhead to a minimum is, therefore, desirable, if
not mandatory. There are many different methods that can be
used to achieve such a goal (see[5], [6] for in-depth investiga-
tions of thisissue and its impact on QoS routing), but they typi-
cally involve waiting either for a large enough change or until a
minimum amount of time has passed.

As aresult, the actua state of a remote node or link can drift
away from the value known to other nodes, without them be-
ing aware of it. The size of the gap between the actua state
and its last advertised value clearly depends on the specifics of
the mechanismsused to control distribution of stateinformation.



For example, a mechanism that relies on thresholds, i.e., an up-
dateistriggered if the difference between the current value and
the last advertised one is greater than, say 50%, implies some
maximum value for this gap. This information can then be used
during the path selection phase to assess the likelihood that a
given amount of bandwidth is available. For example, [12] and
[13] illustrate how this can be used together with the path se-
lection method described in Section |1 of this paper. However,
there are other cases where estimating the value of this gap is
more difficult. In particular, as illustrated in [6], timer-based
mechanisms can induce more arbitrary inaccuracies, which will
require different approaches for selecting good paths.

C. Scope of the Paper and Relation to Previous Works

Aswas outlined above, there are many possible sources of in-
accuracy in network state information, which al tranglate into
different models and levels of inaccuracy. In addition, parame-
ters such as network topology, traffic load, etc., all contribute to
defining a broad problem space and, therefore, solution space.
As aresult, providing a comprehensive set of solutions for com-
puting good paths in the presence of inaccuracy is a daunting
task that goes well beyond the scope of asingle paper. Devising
solutions that explicitly address specific casesis certainly of im-
portance, and some initial results have been reportedin [5], [6],
[12] for the case of the OSPF protocol. However, thisis not the
focus of this paper.

Instead, the goal of this paper is to explore fundamental as-
pects associated with the impact of information inaccuracy in
the context of QoS routing. In particular, we concentrate on the
formal specification of the problem, the derivation of basic com-
plexity results, and the investigation and validation (or invali-
dation) of a representative sample of algorithmic approaches.
Clearly, in the context of such an open-ended investigation, the
focusisless on providing specific justifications for the assump-
tions underlying each scenario, and more on acquiring some ba-
sic understanding of the issues at stake. We feel that the latter is
an important first step in exploring this complex problem. One
that can then help better assess possible trade-offs between per-
formance and complexity, and provide a useful guide for future
investigations, both at the conceptual (e.g., [14], [15]) as well
as the applied level (e.q., [9], [6], [12]). Thisis even more true
given the lack of previous work on the specific topic of this pa-
per.

The most relevant body of work to our problem of QoS rout-
ing in the presence of inaccurate information, is a set of papers
aimed at exploring state aggregation issues and their impact on
routing performancein large networks. [16] provided an initial
investigation of the problem of hierarchical routing in large net-
works, and focused on the problem of cluster design to ensure
maximum reduction of routing table sizeswithout substantial in-
creases in path length (hop count). [17] focused on the problem
of state aggregation in the context of link state routing proto-
cols whose goal was to compute shortest paths. The problem of
state aggregation in the context of QoS routing was described
in [18], with specific aggregation methods being described and
evaluated in [19], [20]. Finaly, [21]-{25] developed a number
of fundamental results for “good” aggregation techniques that

minimize inaccuracy in network state information, while allow-
ing substantial reductionsin the amount of state data.

However, despite their relevance to our problem, none of
these prior works truly addressed the problem of evaluating the
fundamental impact of inaccuracy in state information, on the
performance of QoS routing. Thisisthe focus of this paper, and
the rest of our investigation is structured as follows. In Sec-
tion Il, we investigate the problem of computing good paths
for flows with bandwidth requirements. We show how a sim-
ple adaptation of a standard shortest path algorithm can be used
to compute “optimal” (most likely to be feasible) paths. Sec-
tions 111 and 1V address the case of flows that require end-to-
end delay bounds. Section Il deals with the previously men-
tioned rate-based model, while Section IV considers the case of
the delay-based model. Because of the greater complexity of
the delay-based model, we investigate a number of heuristics.
In particular, we develop an approximation specifically targeted
to the case of hierarchical network models, one which exploits
the specific characteristics of the type of inaccuracies they in-
troduce. The findings of the paper are briefly summarized in
Section V, which also pointsto possible extensions. A key algo-
rithmic technique used in the paper is formulated and validated
inan Appendix. Several technical proofsand details are omitted
and can be found in atechnical report [26].

Il. FLOWS WITH BANDWIDTH REQUIREMENTS

In this section, we address the problem of computing paths
for flows which have specific bandwidth requirements, when
the information available at the source node of such aflow only
consists of an inaccurate estimate of the actual amount of band-
width available at other nodes/networks, represented by a graph
G(V, E). Specificaly, theinformation known at the source node
regarding the available bandwidth on each link [ € E, isin the
form of quantities p; ('), where p; () is the probability that link
[ can accommodate a flow which requires = units of bandwidth.

In the case of alink state protocol, this distribution could be
derived using the last received value for the advertised available
bandwidth on the link, together with some information on the
possible excursions around this value based on the triggering
mechanism in use, e.g., as outlined in [12] for threshold based
triggers. Thebasic premiseisthat thelink state information can-
not be taken at face value, and a probabilistic model is used to
capture the fact that a range of values is instead possible. As
mentioned earlier, our goal in this paper is not so much to as-
sume and justify a specific distribution p; (z) and investigate its
impact on the selection of paths for flows with bandwidth re-
guirements. Instead, we wish to gain some general understand-
ing of the added complexity imposed on the path selection by the
need to deal with imprecise link bandwidth information. This
understanding can then drive the exploration of specific cases,
and the construction of distributionswhich are not only realistic
models to represent state inaccuracy in real networks, but also
enable tractable solutions to the QoS routing problem (see [13]
for adetailed experimental investigation of thisissue, and itsuse
in the context of the methods proposed in this paper).

Inthis context, for anew flow with bandwidth requirement w,
we wish to find the path that is most likely to be able to accom-



modate this new request. For that purpose, we let p; = p;(w)
be the probability of “success’ onlink Z, i.e., the probability that
w units of bandwidth are indeed available on link . For a path
p, II;cppy corresponds then to the probability of success of the
path, i.e., the probability that at least the amount of requested
bandwidth is available on all the links of the path.? The prob-
lem we are trying to solve can then be expressed as follows.

Problem B: For a given bandwidth requirement w, find a path

p* such that, for any path p:

« > 11
Next, we show hovv th%(prz)bTemlﬁgs a( ra%her straightforward

solution, using a standard Most Reliable Path (MRPglgorithm.

Such an algorithm consists of computing shortest pathsfor prop-
erly selected link weights, i.e., weights which are the negative
logarithm of the original link weights. This way, the multipli-
cation of problem B is transformed into the usual additive path
length computation. In other words, we have:

Algorithm (MRP):

1 Letw, = —logp, fordll e E.

2. Find the shortest path according to the metric {w; }.

In [26] we formally establish that the MRP algorithm solves
problem B, i.e,, it yields a path which has the maximum prob-
ability of satisfying the requested bandwidth w. This essen-
tially says that inaccuracies in the actual bandwidth available
on links/nodes can be dealt with relatively simply, using a short-
est path algorithm. As we shall see in the next sections, this
property is not shared when dealing with end-to-end delay guar-
antees.

I1l. FLOWS WITH END-TO-END DELAY REQUIREMENTS:

ADVERTISING OF RATE GUARANTEES

In this section and in the next one, we consider the case of
flowswhich require an end-to-end delay bound for their packets.
The goal of path selection isthen to identify a path that can both
accommodate the traffic generated by the source, and guarantee
that the end-to-end delays experienced by packets from the flow
remain below agiven value. This“guarantee” can be strict (hard
delay bound) or loose (bound on the average delay). Such differ-
ences clearly affect resource allocation and scheduling support,
but do not have a significant impact on the path selection prob-
lem that we consider as they typically translate into constraints
of a similar form. As a result and for purposes of simplicity,
we limit our attention to the case where delay guarantees are in
terms of a hard upper bound.

This section considers the rate-basedservice model of [7]
for providing end-to-end delay bounds. As mentioned earlier,
this model requires the use of specific schedulersat all network
nodes, e.g., a Weighted Fair Queuing scheduler [27] or a Rate
Controlled Earliest Deadline First scheduler [28]. Under the as-
sumption that such schedulers are in use, the end-to-end delay
bound d(p) that the network can guarantee on an n-hop path p
is of the following form:

- Zlep Zdl,

lep

d(p) = 1)

2Note that we make here the assumption that the corresponding random vari-
ables on different links are independent of each other; such an assumption is
made in al the models considered in this paper.

where o isthe size of the flow'sburst, ¢; isafixed quantity at
link I, typically the maximum packet length for the flow, d; isa
static delay value, typically the link propagation delay, and r is
the minimal rate that can be guaranteed to the flow at each link
along the path. In the rest of the paper, we assume that ¢; = ¢,
e.g., itistheflow’'s maximum packet size, whichistruefor many
scheduling policies (e.g., [27], [28]). Thus, for an n-hop path p,

we have
Qp
lep

wherea,, = o + cn.

As can be seen from the above expression, a major benefit of
the rate-based model is that the dependency of the end-to-end
delay bound on network resourcesis only in terms of available
bandwidth on each link, i.e,, therater. Asaresult, the link met-
ric of most significance in this setting is as before the available
bandwidth. In that context, we assume again a network repre-
sented by agraph G(V, E), anddenote N = |V |, M = |E|. The
metrics (state) associated with each link [ consist of afixed prop-
agation delay d;, and aresidual rate available to new flows. As
propagation delays are not subject to (significant) fluctuations,
theresidual rateisthe only quantity that is deemed variable and,
therefore, subject to some inaccuracy.

Asinthe case of flows with bandwidth requirements, we cap-
ture this inaccuracy by assuming that the residual rate is aran-
dom variable with p.d.f. p,(r) corresponding to the probability
of being ableto allocaterate r onlink [. As before, thisdistribu-
tion would likely be based on the last advertised value and some
estimate of the possible variationsaround it. Again, our purpose
is not to study or justify the use of a specific distribution, but to
gain some understanding of how uncertainty in the amount of
available bandwidth affects our ability to compute paths which
satisfy end-to-end delay bounds.

Note that in cases where the source of uncertainty in state
information is state aggregation, propagation delays are aggre-
gated as well, and hence also carry some level of uncertainty.
However, it is expected that the range of variations for these
guantities will be much less than that of advertised residual
rates. As aresult, assuming that only rates are not known pre-
cisely remains a reasonable model even in that setting. More-
over, as can be seen from equation (1), the overall effect of im-
precision in propagation delays can be expected to be smaller
than for rates, since errors on different links can compensate for
each other.

Before we return to assessing the impact of rate inaccuracy
on our ability to select a good path capable of meeting a given
end-to-end delay bound, we note that the relative weight of the
two delay terms in equation (1) can greatly vary based on path
length, traffic characteristics, and rate allocation. But eveninthe
case of long haul connections, e.g., cross country, the impact of
the rate-dependent term need not be negligible. For example, a
video connection with a burst size of 32kbytes, a packet size of
1.5kbytes, an allocated rate of 2Mbits/sec, and taking 10 hops
to cross the continental US, correspondsto aworst case queuing
delay of 188msec. Thisis to be compared to a coast-to-coast
propagation delay of about 20msec.



A. Intractability

Given the source and destination nodes of a new flow, a max-
imum delay requirement D for the new flow, and a path p, we
define 7p(p) as the probability that d(p) < D. We denote
the problem of finding a path that maximizes the probability of
satisfying the end-to-end delay requirement D of aflow in this
setting as Problem R-D. Referring to equation (1), we note that,
despite the fact that as with flows with bandwidth requirements
therater isthe only random variable, substantial differencesex-
ist between the two problems. Not only does the rate r appear
in a denominator position, but the additive nature of the propa-
gation delay term also affects the nature of the problem. Aswe
shall see next, these differences drastically affect the impact of
inaccuracy when it comes to computing paths capable of ensur-
ing delay guarantees. Specifically, we establish that the presence
of inaccuracies in residual rates, as we have just defined them,
makes the path selection problem intractable. Thisis stated in
the next proposition.

Proposition I11.1: Problem R-D is NP-complete.

Proof: Through a reduction to a shortest weight-constrained
path problem, which is known to be NP-complete [29]. Given a
graph with two positive values, a; and b;, associated with each
link I, and a positive bound B, the shortest weight-constrained
path problemisto find a path that minimizesthe sum of thea,’s,
with the constraint that the sum of the b;’s does not exceed B.
The transformation into problem R-D is done as follows. Set
d; < b, and o, < o + en > 1 for dl n (the requirement that
a, > 1for al n iseasly enforced by properly selecting o and
c). Therate at each link can be either infinite or with the
following probabilities:

L
B+1°

Prob{r; = cc} =e
Prob{rj= ——}=1—e .
The delay constraint is chosenas D = B. It is easy to verify

that a path p that satisfies the constraint D must have r = oo
and Zlep d; < B. Thus, apath that is a solution for problem
R-D, i.e., that maximizes the probability of not exceeding the
delay constraint, is also a path that minimizes Elep a; while
obeying the bound Elep b; < B, i.e, that solves the shortest
weight-constrained path problem. Therefore, problem R-D is
NP-hard. Since it can be transformed (polynomially) into a de-
cision problemthat isin NP, problem R-D is NP-complete. O

In the next section, we show that while the original problem
isintractable, a pseudo-polynomial solution can be constructed.

B. Pseudo-Polynomial Solution

Assume that d; takes integer values. A pseudo-polynomial
solution for problem R-D can then be constructed as follows.
1. Foreachl <d < D,foreach1 <n < N:

@ r <+ 5.

(b) Among paths p with at most n hops and for which
Zlep d; = d, find one that maximizes II;cpp; (7).
2. Among the O(N D) 3 chosen paths, choose the one with
maximal probability of success.

3Following standard terminology, we say that a function f(n) is O(g(n))
(respectively, Q(g(n))) whenever there exists a constant ¢ such that | f(n)| <

Using a standard dynamic programming approach, step
(1.(b)) of the above agorithm can be performed in O(DN M)
steps. Thus, the overall complexity of the above agorithm is
O(D>N*M).

While the availability of a pseudo-polynomial solutionis cer-
tainly adesirable feature, it is often not adequate in practice due
tothetypically largevalueof theterm D. Asaresult, it isnatural
to ask if narrowing the problem by making additional assump-
tionson thedistribution of theresidual rate, might yield tractable
(polynomial) solutions. As mentioned earlier, this is useful not
only because certain distributions may be good candidates for
capturing the impact of different sources of inaccuracy, but also
because this sampling of the problem space can provide a better
understanding of the source of the additional complexity intro-
duced by inaccurate state information.

C. Special Cases
C.1 Deterministic Case

Thisfirst caseislittle morethan a“ sanity check” to verify that
the absence of inaccuracy indeed yields a tractable solution. For
that purpose, we assume that each link has a deterministic rate
(r;) associated with it. In that case, problem R-D is equivalent
to the Quickest Path problem [30], for which a simple solution
of O(K(Nlog N + M)) is known, where K is the number of
different values for r; (thus K < M). The solution amounts to
running ashortest path algorithm for each possible value of r. In
[31] it is shown how complexity can be substantially reduced by
resorting to e-accurate solutions, and how the path selection can
be refined in order to incorporate network optimization criteria.

C.2 ldentical d;'s

Thisnext case attemptsto simplify the path selection problem
by making the additive component of the end-to-end delay, i.e.,
the propagation delay, be essentially afunction of the hop count.
For that purpose, we assumethat all propagation delaysareiden-
tical, i.e, d; = d. From a practical point of view, this may be
an appropriate assumption in alocal environment, where prop-
agation will be nearly insignificant so that a single value could
then be used. In this case, the following algorithm provides a
solution.

1. Foreachl <n < N:

« Find a path of at most n hops that maximizes p;(r), where
r = p==—. (Thisstep is carried through an MRP algorithm, as
described in Section 11, which computes shortest paths through
aBellman-Fordshortest path scheme[32].)

2. Among the O(N) selected paths, choose the one with maxi-
mal probability.

The complexity of this algorithmissimply O(N2M).

C.3 ldentica Pd.f's

In this next case, we now explore the effect of a more re-
strictive model for the rate component of the end-to-end delay.
Specifically, we assume that the same distribution function char-
acterizes the residual rate on all links, i.e., p;(r) = p(r). This

¢ |g(n)| (respectively, | f(n)| > ¢- |g(n)|) for al valuesof n > 0. If f(n)is
both O(g(n)) and Q(g(n)), wesay that f(n) is®(g(n)).



may be an appropriate assumption for an homogeneous environ-
ment, or one for which little is known regarding the actual state
of any link so that a common distribution is one possible repre-
sentation of their state. It can then be seen that among paths

of n-hops, an optimal one maximizes p (D aid
- l

i.e, minimizing > d;. Thus, a

) , which

amountsto minimizing -,
- L

solution can be found through a single execution of a Bellman-

Ford shortest path algorithm.

Remark: A tractable solution existsin this case even when ¢; #

U+Elepcl

c. We then need to minimize —<=*2—, which can be done
D_ZZGP &

through algorithm min-PR(see the Appendix).

C.4 Exponential Distributions

This last specia case is one which may be of more practical
interest. It yields a tractable exact solution, while maintaining
the main characteristics of the original problem, i.e,, it preserves
most of the generality of equation (1) and its choice for a distri-
bution of available link bandwidth is one that correspondsto an
intuitively reasonable model. Specifically, we consider the case
where an exponential distribution is used to model the distribu-
tion of residua rateon al links, i.e., p;(r) = e~ #".

Such a model may be appropriate in the context of link state
protocols that advertise a single value to characterize the avail-
able bandwidth on each link. This value could be chosen to
represent the actual available bandwidth at a given instant in
time, which would then fluctuate as new flows get established
and older ones are released. Those fluctuations may not map
exactly onto an exponential distribution, but it nevertheless rep-
resents a reasonabl e choice which captures the expected behav-
ior of small bandwidth requests being likely to be accepted and
larger ones becoming increasingly unlikely. Furthermore, nodes
could also use this exponential model as atrigger for advertising
updated values, when it is deemed that the previous exponential
distribution is not adequate anymore.

Under the assumption of an exponential distribution, the
probability of success over an n-hop path p, isfound to be sim-

ply given by:
—Hion 70‘"2!6:’”

mp(p) = HlepeD_Ziep G, D—Zlgpdl

Thus, an n-hop path that maximizes 7 (p) is one that min-
mi ZlEp m
imizes m.
obtained through algorithm min-PR (see the Appendix). This
result is summarized in the following statement.*

Proposition 111.2; When residual rates are exponentially dis-
tributed, an optimal solution to problem R-D can be found
through agorithm min-PR resulting in O(N?M (log(N - D -
TEMEEAL))) Steps .
min;cg j1

Extensions of the above result are possible. For example, in
[26] we show that Proposition 111.2 holds also in a more gen-
eral case of a shifted exponentia distribution, i.e., each link can
guarantee some minimal, non-zero value of residual rate.

Hence a solution to problem R-D can be

4For simplicity of exposition, the result is stated under the assumption that ¢
and D take integer values.

The above result not withstanding, it may, however, still be
desirable to determine if tractable and near-optimal solutions
can be constructed, that do not require specific assumptions on
the distribution of the available rate on each link. Investigating
this aspect is the topic of the next section.

D. Ane-Optimal Solution

In the previous section, we haveidentified anumber of special
cases for which simple solutions exist, and which have helped us
gain some understanding into the impact of state inaccuracy on
the complexity of path selection. In this section, we show that
simple solutions can also be found, if one iswilling to abandon
the requirement of strict optimality. Specifically, we describe an
approach that yields pathsthat are arbitrary closeto the optimal,
i.e., e-optimal. Thisapproachis based on quantizing the metrics
used in selecting a path.

We consider avalue p,,,;, > 0, which isthe minimal allowed
success probability on any link (i.e., we make the assumption
that a probability of less than, say, pyie = 0.1, resultsin a
prohibitively high risk of failurefor the resulting path). In other
words, we assume that p;(r) is either higher than p,,;,, or else
equal to 0; without loss of generdity, we shall further assume
that p; (r) is always greater than p,,,,. Furthermore, we assume
that theratesr; onlink [ can only take K different values, where
K isafixed (and reasonably small) numberand K = 3, K.
For example, thiswould be the case when using one of the class-
based or quantized triggering policies of [6] to determine when
to advertise new rate values.

An e-optimal solution can then be constructed based on the
following quantization of the residual rate p.d.f.'s on each link.
Let wi(r) = —logp(r). Each w;(r) isrounded up based on a
quantization step 7, yielding a new value denoted as w; (). Let-
ting I = [—25P=i2], we notethat @ (r) € {0,1,2n,. .., In}.

The quantization factor n is chosen asn = %. Note that
n isafunction of the level of inaccuracy oneiswilling to toler-
ate. We point out that we describe here ageneral procedure that
works irrespective of the number K of different values; further
optimization of this procedure is possible by accounting for the
impact of K.

The agorithm for selecting a path based on these quantized
probabilitiesis then as follows.
Algorithm QP:
1. For al K possiblevalues of r:
Foral1<n<N:
Forall 0 <m <mn:
Forall 0<i<I:

(@ Find a path p(n,m,i) of a most n hops and for which
2 iep(n,m,i Di(r) < m-i-n, that is shortest w.rt. the metric
{di}.

(b) 1f 282 +> " cpin,m,i & < D thencompute;ep,m,iypi(r),
the (real) probability of success of p(n,m, 1) for the considered
value of r; otherwise, the probability of success of p(n,m, i)
for the considered value of r is 0.

2. Among the paths identified in the previous step, choose the
one with the highest probability of success.

Theorem Il1.1: With the assumptions specified in this sec-
tion, algorithm QP is an e-optimal solution to problem R-D,



namely: the ratio between the probability of success of a path
chosen by algorithm QP to that of an optimal path is bounded
(from below) by 1 — O(e). Its complexity is O(N3M%), i.e,
polynomial in the input size N, M, and the level of inaccuracy
1 |
‘ The proof can befound in [26].

IV. FLowsWITH END-TO-END DELAY REQUIREMENTS:
ADVERTISING OF DELAY GUARANTEES

This section deals with the aternate delay-basednodel out-

lined in Section | for providing end-to-end delay guarantees. In
this model, end-to-end delay bounds are provided through the
concatenation of local delay bounds at each node. As a result,
the state information that a node now needs to advertise is not
asin the previous section in the form of aresidual rate or band-
width, but instead in terms of its ability to provide specific delay
guarantees. It is then this local delay information, which we
will consider subject to some inaccuracy, and our problem can
be stated as follows.
Given: A maximum delay requirement D for a new flow be-
tween given source and destination nodes, anetwork represented
by agraph G(V,E), N = |V|, M = |E|, p.d.f’sp;(d) for all
[ € E, such that p;(d) is the probability that (for the new flow)
link I will introduce adelay of at most d units, i.e., that d; < d.
As with the rate model, an important issue is again the iden-
tification of appropriate distributions for the local link delays.
However, as before, our focus is not so much on justifying a
particular distribution and deriving a specific solution for it. In
that respect, much of the discussions of Section Il apply here
as well, and we proceed along essentially the same lines in our
investigation of the delay-based model.

Specificaly, for a path p, let 7 (p) be the probability that
Zlep d; < D, and define the path selection problem as:
Problem D: Find apath p* such that, for any pathp: 7 p(p*) >
TD (p)

In other words, find the path p* that is most likely to accom-
modate the new flow and provide it with an end-to-end delay
guarantee less than or equal to D. Next, we establish that, as
with the rate-based model, this problem isintractable.

A. Intractability of ProblenD

Consider first the (simpler) problem of determining whether,
for a given path p and value 7, 7p(p) > w. Cal it Problem
P(r).

Lemma IV.1:Problem P(r) is NP-hard.

Proof: Consider an instance of the K'th largest subset problem
(see [29]). Given afinite set A, asize s(a) € Z7T for each
a € A, positiveintegers K and B, the problem is to determine
whether there are K or more distinct subsets A’ C A for which
the sum of the sizes of the elementsin A’ does not exceed B.
The Kth largest subset problem is known to be NP-hard, and
we will transform it into an instance of problem P(r) in the fol-
lowing manner. The elements of A are ordered arbitrarily to
constitute a path p, in which each a € A uniquely corresponds
toalink in p. Thedelay d, of alink a € p takes the values 0
and s(a), each with probability of 0.5. The delay reguirement
for path p is chosen as D = B, and the probability bound is

chosenasm = 5f5;. Then, it is easy to see that 7p(p) >  iff
the answer to the K'th largest subset problem is affirmative. We
thus conclude that problem P(r) is NP-hard. O

Corollary IV.1: Problem D is NP-hard.
Proof: Consider an instance of problem P(r). Construct a net-
work G, composed of only two parallel paths: the first is path
p (of problem P(r)), the second is a single link, which takes 0
delay with probability 7 — e (where 7 isthe input probability of
problem P(r) and ¢ is asufficiently small positive number), and
delay D + 1 with probability 1 — 7 + €. The answer to problem
P(r) is affirmativeiff path p is chosen when solving problem D.
|

Suppose, that in an attempt to override the intractability ob-
stacle, we would be satisfied with a path that is “reasonably
good”, albeit not necessarily optimal, e.g., a path p for which
7p(P) > Tmin, Where m,, is some (large enough) positive
number. Unfortunately, even this relaxed version is intractable.
Indeed, a solution for the relaxed version could be transformed
into a solution for problem D, through a binary search on the
values of 7,,,;, between 0 and 1, whose complexity is polyno-
mial in the problem size (the details can be found in [26]).

Given the intractability of (even very simple instances of)
problem D, we will resort to approximations and heuristics.
However, we first turn our attention to some specia cases to
see if some simplifications are possible when considering aless
genera problem. The investigation of such special cases often
providesinsight into what might be good heuristics for the gen-
era problem.

B. Special Cases
B.1 Identical Pd.f.'s

The first special case we consider is that of identical p.d.f.’s,

i.e., weassumethat p;(d) = p(d) foral ! € E. Inthiscase, itis
easy to see that any minimal hop path is an optimal solution to
problem D.
Remark: Unfortunately, the above does not hold even when we
“mildly” break symmetry. For example, in [26] we show that
when link delays are uniformly distributed on (u; — &;, i + 6;)
forlink [ € E, where §; = 6, but u; may take more than one
value, aminimal hop path may not be optimal.

B.2 Tight Constraints

In this special case, we attempt to simplify the computation
of 7p(p) by forcing each and everlink of a path to provide a
low delay, in order for the path p to have a non-zero probabil-
ity of satisfying the delay constraint. For example, this could
be representative of an environment where optimization of path
selection is triggered only when resources become scarce, and
accommodating new requests requires such tight optimization.
Specifically, we assume here that link delays are uniformly dis-
tributed, and we will consider two cases. In the first, “propor-
tional window” case, link delays are uniformly distributed on
(- (1 = 8/2), - (1 + 6/2)), whereas in the second, “con-
stant window” case, link delays are uniformly distributed on
(i — &, + 3). Inboth cases we assume that the end-to-end
delay bound is tight, so that, on any path, the delay on any link
cannot be equal to its upper bound.



Consider first the case of proportional windows. The assump-
tion of tight constraints transforms here into the following: for
each path p, thereissomed, 0 < d < ¢ - minep p, such that
D =3 ot (1—38/2) = d. Inother words, the total delay
margin d on path p is such that no link can afford to contribute
its worst case delay. Under such a constraint, it is possible to
obtain asimple explicit expression for the probability = p (p).

Lemma IV.2:1n the case of tight constraints and proportional
windows, the probability that the delay of an n-hop path p does
not exceed D is given by

®) 1 <d>n 1
™ =—|=)  -=—.
DRI = i\ Wieppu 0

The above lemma allows us to then state the following corol-
lary.

Corollary IV.2: In the case of tight constraints and propor-
tional windows, among n-hop paths, the optimal one maximizes

<d>n 1 Do Riepmog) 1,
o Micpu Miepu on 0

Unfortunately, while the additional assumption of tight con-
straints helped simplify the computation of the probability that
a given path meets the end-to-end delay requirement, solving
the path optimization (implied by (2) for proportional windows)
seems to be still intractable. However, if § - min;cg u; isarea
sonably small number, a pseudo-polynomial algorithm of ac-
ceptable complexity can be formulated, as described in [26].

Consider now the case of constant windows, i.e., the delays
d; areuniformly distributed over (1, — %, 1 +$). Following the
samelines as above, it can be shown that the success probability
for an n-hop path p is given by

1 [d\"
5 (©)

Therefore, the optimal path among those having at most n
hops maximizes d, i.e., minimizes ZZEp u, and henceit is a
shortest path w.r.t. the mean values ;. The global solution can
then be identified by comparing the probabilities of the n-hop-
constrained shortest pathsfor al n, 1 < n < N. We summarize
the above discussion in the following statement.

Proposition IV.1: In the case of tight constraints and constant
windows, an optimal path can be found by identifying, for each
value of n intherange 1... N, an n-hop path that is shortest
w.r.t. the mean values u;, and choosing among these N paths
the one that maximizes (3). The complexity of the solution is
O(NM). m|

While we have been able to develop tractable solutions for
some cases of tight constraints, it should be noted that these
casesarerelatively limited, i.e., resourcesare scarce on all links.
Therefore, even if the optimization of path selection is clearly
beneficial in such cases, there are many other scenarios for
which it is also important to be able to identify good paths. As
aresult, it remains desirable to provide a general and tractable
solution capable of handling a wide variety of load conditions.
This we do in the next section, where we attempt to develop
some heuristics to tackle the general problem D. We focus on
heuristics for which a tractable and efficient solution can even-
tually be constructed.

C. Split-Constraints Heuristics

In this section, we investigate a simplification of the general
problem, which is based on the idea of splitting a priori the end-
to-end constraint D among the links, i.e., transform a global
constraint into local constraints. In the next few sections, we
review several such heuristics and determine if and when they
yield practical solutions. The first heuristics serve as building
blocks for the ultimate one, which, as shall be shown, suits well
the case where state inaccuracy is primarily caused by state ag-
gregation.

C.1 Split-Constraints Heuristic - Version 1 (S1)

In the first version S1 of the split-constraint heuristic, the de-
lay split is performed so that the probability of meeting the (lo-
cal) congtraint is equal aong al links in the path. The path
selection problem is then to find the local constraint value that
yields the best path. In other words, given a path p and some
valuel < p < 1,wesplit D into D;’s, [ € p, such that, for each
linkl € p:

pi(Di) =p, orpi(Dy) =1 4
(the second possibility is introduced in order to deal with links
for which only adeterministic value is available), and®:

> D =D. (5)
lep

We further assume that the delays d; on link [ are uniformly
distributed on (v;,7; + ¢;), and that, for smplicity, D, ~;, and §;
take integer values.

It isthen easy to see that:

1. Thereisasolutioniff 3°,. v < D (thuss D =37, v >
1).

2. 1fD > 37, (v + &), then the probability of successin p
isequal to 1.

Thus, we first check if the shortest distance in the network
G, w.rt. {y}, isno morethan D (otherwise, there is no solu-
tion), and if the shortest distance w.r.t. {y; + ¢;} is more than
D (otherwise, a shortest path p w.r.t. {y; 4 &;} is optimal, with
7p(p) = 1). Accordingly, we assume from now on that thereis
apath p’, such that:

> w<D (6)
lep’
and that, for all paths p:
> (w+6)>D. (7)
lep

It can then be verified that expressions (4)—7) have the fol-
lowing unigue solution:

0
Di=(D-) v+ (8
‘]'261; ! Z]Gp(s]
for which: Doy
— 2 jep Vi
m(Dy) = —=—1L = 9)
Zjep(sj

Thus, for apath p with n hops:

5|n equation (5) we ignore the possibility thatzlep D; < D with probabil-
ity 1; as shall become clear subsequently, thisis done without loss of generality.
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ZJ'Ep 6]'
Therefore, heuristic S1 selects the path in the following way.
Heuristic S1:
1. If the shortest distance in the network G, w.r.t. {~;}, ismore
than D, then stop (there is no solution).
2. If the shortest distance, w.r.t. {v; + d;}, islessthan D, then
stop (ashortest path p w.r.t. {~; + &;} isoptimal, with 7 (p) =
1).
3. For 1 < n < N, run agorithm min-CTW(n)(see the Ap-
pendix), in order to find an n-hop walk p(n)® that minimizes
the following expression:
ZjEp 61'
D - EJ’EP Vi
4. Choose the path p that maximizes (10) among all p(n)’s.”
In view of the complexity discussion presented in the Ap-
pendix, the complexity of heuristic SLis:

mp(p) > (10)

(11)

O(N?M - (log(N - D - Ilréabg(él))).

The solution p generated by heuristics S1 has a number of

“nice” properties which we briefly review.

1. ltisfeasiblei.e,fordll e p,v < D; <+ 4.

2. For 0; = 0, wehave D; = v, = d;, i.e.,, adeterministic link
is assigned its deterministic delay.

3. In a network with identical p.d.f.’s we have, for an n-hop
path: D;(n) = %, i.e.,, asymmetric assignment. Therefore, p is
aminimum hop path, i.e., the (real) optimal path.

4. Moregenerally: expression (10) growswith D and decreases
with 3~ v;, > & and n. This means that we prefer paths with
fewer hops(n), higher slack (D — 3" +;), and smaller uncertainty
(>_ &1), which seems like an intuitive thing to do.

Despite the above benefits, heuristic S1 also has shortcom-
ings, in particular when links are heterogeneous. Indeed, in that
case, it may be a bad idea to impose the same success prob-
ability on al links. For example, consider a path composed
of two links, with delays uniformly distributed on (0.5, 1.5)
and (50,150), respectively, and assume a delay constraint of
D = 51. The probability of success on the second link can
only be small, and heuristic S1 will thus also force asmall prob-
ability of successon thefirst link. Thisisinefficient asthere are
other partitions of D into D, and D5 that result in much higher
success probability for the path. However, thereisaspecia case
for which this drawback is not present, and we discuss it next.

Assumethat ; = 4. Then, the probability of success over an

n hoppathp is
EDICAN
Jjep I
(=) 12)
and the partitionis
D->". ;
D, = 2jep +7 (13)

which can be shown to aso benthe best possible a priori par-
tition, that maximizes the success probability of path p (this

6As explained in the Appendix, p(n) may contain loops, thus it is a “walk”
and not necessarily a (simple, i.e. loopless) “path”.

7As explained in the Appendix, athough p(n) may contain loops for some
values of n, p isa(smple) path.

assertion is formally established in [14], under a more general
setting). In that case, the optimal path can be found simply by
running NV shortest-path algorithms. Thus, for the case of iden-
tical §;'s, we derive the following heuristic, denoted as Sl for
Split constraint heuristics with Identical §;’s.
Heuristic Sl:
1. If the shortest distance in the network G, w.r.t. {~;}, ismore
than D, then stop (there is no solution).
2. If the shortest distance, w.r.t. {7, + ¢}, islessthan D, then
stop (ashortest path p w.r.t. {; + &} isoptimal, with 7p (p) =
1).
3. Fordln,1 < n < N, find an n-hop path that is shortest
w.rt. {v;}.
4. Choose the best, among the O(N') selected paths, either ac-
cording to expression (12), or by exact computation of the path
probability of success (if such a computation, involving an N-
stage convolution, is reasonably tractable).

Heuristic Sl has the following desirable properties.
1. Thedesirable properties of S1.
2. Optimality of the split of D into D;’s, along any chosen path.
3. In the case of tight constraints, and when the choice among
the O(V) selected paths is done according to an exact compu-
tation, the chosen path is optimal.
4. Noting that step (3) can be done through a Bellman-Fordal-
gorithm, we conclude that the complexity issimply O(N - M).

In [26] we present a heuristic that attempts to generalize the
above result, i.e., obtain the above optimality property (2) also
when the §;"s are not identical. Unfortunately, while we are able
to develop a simple procedure to pick the best delay split for
any given path, this does not extend to a simple (tractable) path
selection procedure.®

In the next section, we design onelast split-constraints heuris-
tic that not only leverages the above findings, but also incorpo-
ratesinformation on the overall structure of the network. Specif-
ically, we assume hierarchical network structure asin the PNNI
protocol [1], where each layer in the hierarchy represents an ad-
ditional level of aggregation of network/link state information.

C.2 Applying Sl in aHierarchical network model (SIH)

As mentioned earlier, it is often the case that networks are
organized according to some hierarchy, which determines how
network state information is to be aggregated. Knowledge of
this underlying hierarchy can provide useful guidelines when
devising heuristics to accommodate the loss of information that
aggregation entails. However, before investigating such a possi-
bility, we proceed to first describe more precisely the character-
istics of a hierarchical network model.

As before, the network or set of networks across which flows
need to be routed is represented by a graph G(V, E), where V
is now the set of layer 1 nodes, and E is the set of physical
links interconnecting them. G(V, E) will be referred as the ac-
tual network Layer 1 nodesare clustered to form layer 2 nodes,
which areinturn clustered into layer 3 nodes etc., up to the last,
say L-th, layer. Nodes of the same layer i, which are clustered

8However, in[14] it is shown that, by imposing aconvexity assumption related
to the p.d.f.'s, an e-optimal path selection procedure of polynomial complexity
can be constructed.



Fig. 1. Example of Hierarchical Network

into the same (i + 1)-layer node, are said to belong to the same
peer group[l]. Layer-i nodes that form a layer-(: + 1) node
are called its children and the upper layer node is called their
parent An ancestorof a node is either its parent or an ances-
tor's parent. We assume that each peer group is composed of at
most m nodes of the lower layer, wherem is afixed(reasonably
small) number. Since |V'| = ©(m!), we concludethat the num-
ber of layers L is O(log |V]). For each layer 1 node i, the above
hierarchical procedure derives a corresponding aggregated rep-
resentation of the network, which will be referred as the image
(of the network G(V, E)) at nodei.

The above terminology is illustrated in Figure 1. The
“sguares’ correspond to layer 1 nodes, whereas the “clouds’
represent layer 2 and layer 3 nodes. The nodes and links drawn
with full lines correspond to the network image at any of the
layer 1 nodes located at the upper-left part of the figure. Ac-
cordingly, the dashed nodes and links correspond to the compo-
nents that are invisible at those nodes. In this example we have
m=4,L=3and|V| = 32.

Associated with each layer-i node, say v(i), are aset of num-
bers, that aggregate the state and metrics information of the
layer-1 actual network components of which v (i) is the corre-
sponding ancestor. The way by which this metric aggregationis
performed is out of the scope of this paper (see, e.g., [18] and
references therein for typical examples). Nevertheless, the fol-
lowing general observations can be made, independently of the
precise method of metric aggregation:

H1 The amount of aggregated information, and thus its impre-
cision, grows with the layer index. Usualy, at each layer the
aggregation process encapsulates ©(m?) information into an
O(m) (or evenan O(1)) database.

H2 Some aggregated values grow with the layer index. For ex-
ample, the delay associated with a layer i node aggregates the
delay over entire paths at the lower, i — 1'st, layer.

H3 A link interconnecting two nodes of a layer i, say (i) and
v(i), represents some set .S of actual links that interconnect the
corresponding actual nodes, aggregated by « (i) and v(7). The
metric associated with link (u(7),v(i)) combinesthe metric as-
sociated with each of the two end-nodes, together with an ag-
gregation of the metric of the links in the set S. For example,
the delay associated with (u(4),v(i)) combines the aggregated
delay associated with u(7), together with the aggregated delay

of thelinksin S. It should be noted that, in general, aggregation
isacomplex process, that introduces dependencies between link
metrics not only across layers but also within the same (higher)
layer. However, accounting for such dependencies during the
path selection process is a difficult, if not impossible task. Fur-
thermore, assuming that aggregation is successful, as it should,
at properly ordering link metricsin each level, itsimpact on the
hierarchical routing heuristic we describe next should be rela
tively small.

Requests are placed to path selection processes at source
(layer 1) nodes. The information available to a path selection
process at a hode ¢ corresponds to the image of the network at
that node. Considering a specific request at some node i, we
denote by M the number of linksin the image of the network at
1; similarly, we denote by NV the maximal number of nodes on
a(simple, loopless) path between source and destination on the
image of the network at that node. Sinceapath for aflow iscom-
posed of up to m nodes at each of the L layers, we conclude that
N =0(m-log|V]) = O(log|V]), i.e, on the network’simage
the maximal size of a path grows logarithmically with the size
of the actual network. Similarly, M = O(m?-L) = O(log |V ).

As an example, consider again Figure 1. Suppose that a re-
quest is placed at one of the (layer 1) nodes drawn with full lines
at the upper left part of the figure. It is easy to verify that any
path to the destination, on theimage of the network at the source
node, is composed of at most four nodes of layer 1, two nodes
of layer 2 and two nodes of layer 3, i.e., N = 8. The network
image consists of five links between layer 1 nodes, three links
between layer 2 nodes and three links between layer 3 nodes,
i.e, M =11.

The aggregation processinduced by such ahierarchical model
can be used to justify a number of assumptions regarding the
advertised network state, which can help formulate heuristics
to deal with our path selection problem. Specifically, we can
assume that the parameters that characterize network “links” at
each layer have the following properties, where for ease of ex-
position, we assumethat link delays d; are uniformly distributed
in(y, v + d):

« Ateachlayeri, al ¢,'sareidentical, and denoted by §(3).
Justification: the actual valueislikely to be heavily based on the
level of aggregationimplied by [, i.e., onI'slayer.

« Foralink [ inlayer i and for a path p wholly in layer i — 1,
Y =0(Tep7)-

Justification: asinglelink at layer i amountsto crossing awhole
peer group of layer i — 1. (See observation H2 above.)

« The{; of layer i isQ(m) larger than that of layer i — 1.
Justification: the aggregation process encapsulates © (m?) in-
formation into an O(m) database. (See observation H1 above.)

In view of the above observations, we formulate heuristic SIH
on the basisthat linksin ahigher layer have greater weight than
those of lower layers. Hence, it is preferable to start with them
when attempting to select good paths. This heuristic is embod-
ied in the following agorithm which, due to space constraints,
is only described informally here (the reader is referred to [26]
for aformal description).

Since agivenlayer only playsaminor rolein the performance
of the global path as compared to the next higher layer, the path
will be constructed top-down, i.e., wefirst choose the path suffix



which corresponds to the last layer, and then proceed sequen-
tially to the lower layers. However, we do let lower layers affect
to some extent the choice of higher layer paths. In order to allow
such feedback, at each layer i we do not limit ourselvesto asin-
gle path, but rather choose several, say K, layer-i paths. Then,
when moving to the i — 1-st layer, we will consider each of the
K layer-i paths and identify a corresponding layer-(i — 1)-path.
Then, by comparing the K possibilities, obtained by concatenat-
ing each layer-i path with its corresponding layer-(i — 1) path,
we identify the best solution for the i-th layer, among the K
layer-i paths. We then continue the recursion with layer i — 1.

It remains to determine the rule according to which paths are
evaluated and chosen, which we do next. At each layer i we con-
sider a delay bound D(3), which corresponds to what is “left”
from the origina value D after having consumed part of it at
the upper layers (the precise computation of D(i) appears in
[26]). Thus, at layer i, paths will be selected so as to maxi-
mize the probability of success assuming an optimal partition
of D(7) into link constraints D; along the path. Suppose first
that K = 1, i.e, at each layer we only identify the “best” path.
Since at each layer dl §;'s are equal, it follows from the dis-
cussion on heuristic Sl (Section 1V-C.1) that the path selection
should be done in the following way. We identify the shortest
n hop path with respect to {~,}, for each possible number of
hops n; the best path is chosen among these shortest paths so
as to maximize the approximated probability of success given
by (12). Accordingly, for avalue K > 1, we find the K short-
est paths for each hop number n, and then choose the best K
(according to (12)) among these paths.

The full details can be found in [26]. We mention here that,
for K = 1, the complexity of heuristic SIH is O(m - M), which
compares well with O(N log N + M), i.e., the complexity of
aregular shortest-path algorithm run on the topology visible to
the source; for K > 1, the complexity isO (K -m3 - M), which
is gtill reasonable, as the hierarchical representation should be
designed with asmall value of m.

In [26] the potential efficiency of the heuristic is discussed.
Since the discussion is based on the detailed specification of the
algorithm, we will confine ourselves hereto afew important ob-
servations. For K = 1, SIH has all the desirable properties of
Sl. Higher values of K can be expected toimprovethe quality of
the solution, at the expense of increasing the complexity. How-
ever, in [26] it is demonstrated that, typically, the lower layers
indeed have only aminor effect on the path, thusa small value of
K, even K = 1, should usualy suffice. In[26] we aso discuss
other, more complex, variations of the algorithm.

V. CONCLUSION

In this paper, we have investigated the impact on the path se-
lection processfor flows which require QoS guarantees, of inac-
curacies in the available network state and metrics information.
These inaccuracies can have many sources such as the need to
limit the rate at which state updates are distributed, the aggre-
gation of state information to ensure scalability, or in general
the use of generic state representations that do not account for
the specific details of anode/network internal structure. Our fo-
cus was on gaining some basic understanding into the impact of

d: NP-hard

Exponential £ optimal Split Hierarchical Tight
(e constraints
(often exact)

Equal Probs.  Optimal
(not efficient)  (intractable)

6.56\

SIH
(good/promising properties)

Fig. 2. Summary of Results

such inaccuracy on our ability to select good paths, i.e., paths
likely to have sufficient resources, for flows with bandwidth re-
guirements and end-to-end delay guarantees.

We showed that in the case of flows with only bandwidth re-
guirements, the impact of inaccuraciesis relatively minimal, in
that agood path could be identified based on an algorithm which
was essentially a shortest path algorithm. Unfortunately, the
same could not be said for flows with end-to-end delay guar-
antees, for which we found that inaccuracies had a major impact
on the complexity of the path selection process, that typically
became intractable.

We then proceeded to study this latter case further for two
different models, namely a rate-based model and a delay-based
model. We showed that for the case of arate-based model, the
problem isintractable. However, we identified a number of spe-
cial cases of practical interest, for which tractable solutions ex-
ist. We note that the derivation of some of these solutions (pre-
sented in the Appendix) is in itself a contribution of this paper.
In addition, we showed that by introducing metrics quantization,
near-optimal solutions can be constructed at areasonable cost in
terms of complexity. For the delay-based model, we also estab-
lished intractability and then investigated a number of heuristics
that involved splitting the end-to-end constraints into local con-
straints. Using these heuristics, we developed an approach that
provides a solution of acceptable complexity for the case where
the source of inaccuraciesis the aggregation process that occurs
in hierarchically interconnected networks.

A summary of the paper’s results is shown in Figure 2, and
we hopethat they will foster additional worksin what we feel is
an important area. Some follow-on studies are reported in [5],
(6], [12], [13], [14], [15].

Several aspects clearly require further investigation, and we
proceed to name a few major ones. One aspect is identifying
probability distributionsthat can realistically capturethe inaccu-
racy in state information. The exponential distribution is an at-
tractive candidate because it is an intuitively reasonable model,
and onewhich also yields practical solutions. However, asillus-
trated in [6], state inaccuracies can be of many different forms
based, for example, on the trigger mechanisms used for state
updates (see [13] for an experimental investigation of possible
distributionsin the case of connections with bandwidth require-
ments). As aresult, we do not expect that a single model will
be adequate for all environments. This wide range of possible
scenarios was indeed one of the primary motivationsfor seeking
some basic understanding of the problem as carried out in this



paper. Another aspect is the incorporation of network optimiza-
tion criteria within the path selection process, e.g., network uti-
lization, carried load, number of flows successfully routed, etc.
Here, we note that one possible approach for incorporating such
criteriainto our model, is to appropriately “distort” the p.d.f.'s
used to account for state inaccuracy. For example, if network
optimization requires to discourage the use of alink, its related
p.d.f. can be (artificially) changed so as to manifest lower suc-
cess probabilities. While this seems a plausible and promising
approach, understanding the appropriate level of distortion re-
quired to comply with a given criteria, is clearly an issue that
calls for further investigation. Finally, another important aspect
is an extension to multicast routing, and some initial, related re-
sults can be found in [15].
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APPENDIX

PATH OPTIMIZATION WITH RATIONAL OBJECTIVE
FUNCTIONS

Several times in this paper, we face the need to solve a path
optimization problem with a rational objective function of the
following form.

Problem min-PR: Given agraph G(V, E) with adistinguished

pair of source and destination nodes, an integer B, and, for all

| € E, anumber a; > 0 and an integer b, > 0.° Denote by

P the set of (ssimple, loopless) paths between the source and

the destination, for which 3~ b; < B,i.e, P+ = {p| > ;. bi <
ap

Problem min-PR resembles a class of combinatorial opti-
mization problems, broadly known as “Minimum Cost-to-Time
ratio problems (min-CT)” (see, e.g., [33] and the references
therein), which can be generally stated as follows.

Problem min-CT: Given agraph G(V, E), for al [ € E, two
number z; and y;, such that 2; > 0 on al [ and, on any path
(alternatively, cycle) p, >, v > 0 holds. Among all (simple)
paths p between a distinguished pair of source and destination

B}. Find apath p* € P, that minimizes

9We note that the results that follow hold also when B and § are non-integers,
with aslight modification of the time complexity.



nodes (alternatively, al cycles p), find a path (alternatively, cy-

cle) p* that minimizes ﬁ
lep

In [34], a polynomial algorithm was presented for the corre-
sponding min-CT cycle optimization problem. The algorithm
depends on both the number of inputs (i.e., on the size of the
graph) and on a logarithmic term of the maximum size of an
input value. Later, in [35] a genera approach was described
for solving minimum ratio problems, which, as a specia case,
yields a strongly polynomial algorithm (i.e., that depends on
only the number of inputs but not on their size) for the min-
CT cycleoptimization problem. In [36] it was shown that, in
general, the corresponding min-CT path optimization problem
is NP-complete.

Theaboveintractability result might indicate that our problem
min-PR is intractable since we also attempt to optimize paths.
However, the following discussion will show the opposite. We
begin by noting that the intractability of (the path version of)
problem min-CT stems from the requirement to limit the search
on smple paths. If the solution is alowed to contain loops,
then, as shall be demonstrated, the problem becomes tractable.
Following common terminology, we shall call a path that may
contain loops a walk As afirst step, then, we replace problem
min-CT with a corresponding walk-optimization problem min-
CTW. Thekey point in our approach isto note that the solution
of problem min-PR is necessarily a (loopless) path, even when
the search is conducted on the broader domain of walks. This
fact will be formally established subsequently.

A second problem that we encounter when trying to solve
problem min-PR through a solution to problem min-CTW, is
that the latter assumes that the denominator of the objective
function is positive on all pathswalks. Indeed, the problem
does not make sense if the denominator takes a negative value;
in terms of the various problems analyzed in the paper (i.e.,
those that boil down to a min-PR-type problem), a negative de-
nominator correspondsto a path on which the end-to-end delay
bound is violated with probability 1. Thus, one might suspect
that problem min-PR would not be solved through a solution
of problem min-CTW, unless the search is somehow limited to
only paths/'walks with positive denominators, which seems to
be an intractable task. However, as we show below, it turns out
that the basic solution to problem min-CTW operates correctly,
even if its search includes forbidden paths/walks with negative
denominators.

We now turn to aformal description of the problem, its solu-
tion and the corresponding correctness proof.

Given a graph G(V, E), with a distinguished pair of source
and destination nodes, and, for all [ € E, two numbersz; > 0
and y; (note that y; may be negative). Denote by W+ the set
of walks w between the source and the destination, for which
Sy > 0,ie, WH = {w|> ., w > 0}. Forawak w €

W, denote F(w) = i

lEw
lew !

Problem min-CTW: Find a wak w* € W™, between the
source and the destination, of at most N — 1 hops, such that,
foral w e W, F(w*) < F(w).

For ease of presentation, we consider also problem min-

CTW(n), whichisarestriction of problem min-CTW onwalks
of at most n hops. We proceed with a solution to this last prob-
lem.

Algorithm min-CTW(n):

1. If the shortest distance of n-hop walks between the source
and the destination according to the metric { —y; } is nonnegative
(i.e., non-hop walk in W) then A\(n) < oo and Stop.

2 [« min;eg H maxicg N'&y
’ zﬂa);}EE n-lyi]’ minieg |y
L+H
3 A =5
4 Fordll e E: ) < x; — Ay

5. Among walks of n hops between the source and the destina-
tion, find a shortest walk (possibly containing loops) w accord-
ing to the metric Z;, and denote its length by A.1°
6. If A <Othen H «+ \.
7. 1f A >0then L + A.
8. If A # 0thengotostep (3), else (A = 0):
(@ w(n) <« w.
(b) A(n) < A
(c) Stop.
Note that the returned values are A(n) and, whenever A(n) <
00, dsow(n).
Lemma A.1:Algorithm min-CTW(n)solves problem min-
CTW(n). Its complexity is

O(n - M -log(n -
minyegpx; minegy
Proof: First, note that for awalk w ¢ {W*}, wehave, for any

A> 0,
Zfzzzwl—kzyl > 0;

also, itisclear flr%‘% the afégrithm thla?/v\ > 0 aways holds.

Consider some hop-count n. Accordingly, al the following
references to walks are to n-hop walks between the source and
the destination. Step (1) identifies the case in which there is no
n-hop walk in W+. Therefore, assume that W is nonempty,
and let w*(n) be an optimal n-hop walk, with a corresponding
optimal vaue A\*(n) = F(w*(n)).

Consider an arbitrary iteration of the algorithm. Suppose that
the current A issuch that A\ = A\*(n). This meansthat the length
of w*(n) according to the metric #; is 0. Any other walk in
W+ cannot have a smaller length since this would contradict
the optimality of w*(n). As shown above, walks not in W+
have a length larger than 0. We conclude that, for A = A*(n),
the algorithm ends with the correct value.

Suppose now that the current A is such that A > A*(n). Ap-
plying an argument similar to the above, it can be verified that
the shortest walk (according to the metric ;) has length less
than 0. Thus, the algorithm proceeds by decreasing the value of
A, i.e, it getscloser to A*(n).

Finally, suppose that the current X is such that A < A*(n).
Any w € W+ must have ), z1 > AY ., wi. This, to-
gether with the observation made earlier for walks not in W,
implies that, for any walk w, >, #; > 0. Thus, the algo-
rithm proceeds by increasing the value of ), i.e,, it gets closer to
A*(n).

We conclude that the binary search advances in the right di-
rection. Therest of the proof issimilar to that of the correspond-
ing algorithm for the min-CT problem (see[34], [33]). m|

maXxjep Ty Maxicg Y

10This step can be carried out through a Bellman-Fordshortest path algorithm.



We are now ready to present a solution to the origina prob-
lem, min-PR.

Algorithm min-PR:

n ¢+ 1.

setx; < ap, y; + % — b, fordll e E.

Call agorithm min-CTW(n)which returns A\(n) and w(n).
n+<n+1.

If n < N then go to step (2).

* isapath w(m) for which A(m) < A(n) foral 1 <n <

SO AWN P

The following lemma establishes the correctness of algorithm
min-PR In particular, it showsthat p* is, necessarily, a (ssmple)
path.

Lemma A.2:Thewalk p*, identified by algorithm min-PRis
a (simple) path that solves problem min-PR.

Proof: It is straightforward that p* is a walk that solves the
corresponding problem min-CTW. Therefore, and since P+ C
W, it suffices to show that p* does not contain loops. Sup-
pose that p* does contain a loop, denoted by c. Denotew =
p* \ ¢, and note that w is also awalk between the same source-
destination pair. Let n and m be the number of hops on ¢ and
w, respectively (therefore, the number of hopson p* isn + m).

First, we establish that w € W*. Since p* solves problem
min-CTW, we have p* € W, therefore:

0 < Yu=Y (1 h=B-Y
lep* lep* lep*
= B—Zb,—Zbl<B—Zb,:
lEw lEc lew
= Z——bz >, (14)
lew lew

thereforew € W+.

We now show that the loop ¢ contradicts the established opti-
mality of p* w.r.t. problem min-CTW.

Diep- T _ pI— _ Yiep+ W
EZEp* i Zlep (n—i——m - bl) B - EZEp* b
— Zlew ar + EIEC
B ZlEW Zlec
_ Diew U+ e W S Diew W
Zlew(% - ) Zlec Elew( - )
_ Ziew® (15)
Ezgw Y
Sincew € W, (15) implies that w is a better solution for
problem min-CTW than p*, which is a contradiction. O

We thus obtain the following result:

Theorem A.1:Algorithm min-PR solves problem min-PR.
Its complexity isO(N2M - log(N - T&1eE9L . BY),

mlnleE ap

Proof: FollowsfromLemmasA.1 and A.2. O
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