
The Cost of QoS Support in Edge Devices
An Experimental Study

R. Guérin1 L. Li, S. Nadas P. Pan V. Peris
guerin@ee.upenn.edu lli,nadas@us.ibm.com pingpan@lucent.com vperis@watson.ibm.com

U. Pennsylvania IBM Corp., Netw. Hdw. Div. Lucent, Bell Labs, IBM T.J. Watson Research Center

200 S. 33rd Street P.O. Box 12195 101 Crawfords Corner Rd. P.O. Box 704

Philadelphia, PA 19104 Research Triangle Park, NC 27709 Holmdel, NJ 07733 Yorktown Heights, NY 10598

Abstract—This paper investigates the problem of making QoS guaran-
tees available in access devices such as edge routers, that are commonly
deployed in today’s IP networks. In the paper, we propose a specific design
which we evaluate by carrying out a complete implementation, whose per-
formance we then measure in the context of an experimental testbed. Our
results indicate that a reasonable level of service differentiation, i.e., rate
and delay guarantees, can be provided with a minimal impact on the raw
packet forwarding performance of edge devices.
1 This work was done while with the IBM T.J. Watson Research Center.

I. I NTRODUCTION

Quality-of-Service (QoS) is one of the next challenges that
the Internet faces, and there are numerous standard activities
and new technologies that are being developed to help QoS be-
come a reality. Most of the work so far has focused on develop-
ing mechanisms and algorithms that scale to the ever increasing
speed of the Internet backbone, while enabling a wide range of
QoS guarantees. These efforts have been successful at removing
most of the technical hurdles to making the Internet backbone
QoS capable. However, introducing the capabilities required to
support QoS in the Internet infrastructure represents only half
the problem. Another key component is to enable users and ap-
plications to access these new capabilities. That this is in itself
a difficult task is by now well understood, and has often been
quoted as one of the main reasons for the relatively slow de-
ployment of QoS.

In particular, many users and applications lack the ability, or
understanding, or both, to determine the exact level of QoS they
need and should require from the network. Even assuming the
ubiquity of a signalling protocol such as RSVP [1], which is
by now becoming available as part of most operating systems,
it is unlikely that many applications will be capable of leverag-
ing this new capability, at least not initially. Instead, appropri-
ately mapping user traffic onto available network QoS services
is likely to be the responsibility of edge devices, which will be
configured according to various administrative, policy, and user
specific criteria. In addition, even as users and applications be-
come more QoS aware and capable of specifying individual re-
quirements, it is likely that for scalability purposes individual
requests will be aggregated before being forwarded into the In-
ternet backbone. This indeed is the model underlying the recent
Diff-Serv standardization effort in the IETF [2], [3], [4], and ex-
plicitly outlined in [5], [6]. Edge devices are again the natural
place for such a function as illustrated in Figure 1, that describes
a likely scenario for deployment of QoS over IP networks. As
a result, we expect edge devices to represent a key component
in the deployment of QoS capabilities in IP networks. But they
also have the potential for becoming a major obstacle, unless

IP Backbone

Campus/local
 IP Network

Campus/local
 IP Network

Backbone
Router

Backbone
Router

Backbone
Router

Backbone
Router

Edge
Device

Edge
Device

packet classification,
filtering, marking, shaping,
policing, service differentiation,
prioritization, etc.

Edge
Device Residential

 IP Network

Server

Farm

Edge
Device

Fig. 1. Scenario for QoS Deployment Over IP Networks.

QoS enhancements can be introduced incrementally on the large
installed base of edge devices.

The goal of this paper is, therefore, to investigate issues re-
lated to the role of edge devices in enabling service differenti-
ation over the Internet, and in particular the feasibility of up-
grading existing systems. Our focus is on mechanisms that can
be easily introduced to support QoS in the relatively low-end
edge devices that are deployed today. In particular, while per-
formance requirements mandate the use of dedicated hardware
to support QoS in backbone devices, this is typically not feasi-
ble for edge devices. Instead, QoS support in those devices is
often software based, not only because of the low cost point of
such devices, but also because of the need for flexibility and up-
gradeability. Indeed, given the evolving nature of the standards,
e.g., Diff-Serv, such characteristics are desirable if not manda-
tory. An important issue in the context of a software based solu-
tion is that the greater path length associated with the additional
instructions required by QoS, can affect the raw device through-
put.

In the paper, we report on an investigation of a software im-
plementation for QoS support in a typical edge device. To prop-
erly assess the cost and capabilities of such a software based so-
lution, the implementation is carried out on a fully operational
access router platform. The modifications to the router code are
made with flexibility in mind so that as the standards progress,
the implementation can be evolved to accommodate different
models for QoS guarantees. A major emphasis of the imple-
mentation is to minimize the number of additional instructions
required by QoS extensions, so as to introduce the smallest pos-
sible performance penalty. In order to assess the magnitude of
the overhead due to QoS support, we compare the raw through-

1 2 3 4

1 2 3 4

device
buffers

device
buffers

device
buffers

device
buffers

system buffers

CPU

Main System
Processing &
Storage Unit

System Bus

Line
Cards

Link
Interfaces

Fig. 2. System Architecture Overview.

put of our router platform with and without QoS extensions, and
as a result verify that the approach chosen avoids any significant
penalty. In addition, we also establish that basic performance
guarantees, e.g., rate guarantees, are met even in the presence of
badly misbehaving users.

The results provide some insight and initial evidence of the
feasibility of delivering relatively comprehensive QoS guaran-
tees in simple edge devices, with minimal impact on their raw
performance. This should help accelerate the deployment of
QoS capabilities in IP networks as it implies that they can be
made available incrementally, i.e., via a software upgrade, to
users of such networks, and with minimal impact on their basic
performance. There are clearly many possible enhancements
to the implementation we describe, and in the paper we point
several of them out. Unfortunately, we expect some of these en-
hancements to come at a cost, i.e., a degradation in throughput,
but, as yet, we have not been able to assess their magnitude.

The rest of this paper is structured as follows: In Section II
we outline the overall structure of the system on which our im-
plementation is built, and identify its basic characteristics. Sec-
tion III describes the different services supported in our imple-
mentation as well as the components responsible for ensuring
them. It also highlights our design goals. In Section IV, we
briefly review our test setup and the methodology we use to ob-
tain our performance estimate. Section V reports on the results
of our tests and measurements and discusses their implications.
Finally, Section VI summarizes our findings.

II. SYSTEM STRUCTURE OVERVIEW

In this section, we briefly describe the overall structure of the
router platform on which our implementation is based, and also
point to some of the constraints it introduces. Some of these
constraints are specific to the platform, but several of them are
generic and likely to be present in many edge devices.

Our edge device has an architecture often seen in access routers
and relatively common among first generation routers. It con-
sists of a central processing unit responsible for all packet for-
warding and classification functions, to which a number of link
adapters are connected. An overview of the system structure is
shown in Figure 2. Incoming packets are temporarily stored in
buffers on the link adapters, before being transferred across the
system bus into the main system memory. Once in system mem-

ory, packets are processed and this processing includes both for-
warding and classification decisions. The processes of interest
in the context of this paper are those associated with classifi-
cation as this is where service differentiation is enforced. The
central processor is also responsible for queueing packets for
transmission on the output devices.

The data path followed by a packet is, therefore, as follows:
An incoming packet is first received in a buffer in the device
associated with the link on which the packet is arriving. Fully
received packets are then DMA’ed into system memory, where
memory space has been allocated for each input device. It should
be noted that for a number of implementation specific reasons
that have mostly to do with minimizing the overhead associated
with buffer manipulations, packet buffers all have the same size.
As a result, memory consumption is sensitive to the number of
packets rather than to packet sizes, i.e., many small packets use
more memory than a few large ones. This is an important de-
sign constraint when it comes to providing service guarantees
as it affects how we need to perform memory allocation. In par-
ticular, consumption of CPU cycles and memory needs to be
accounted for in packets/sec, while bytes/sec is the relevant unit
when it comes to controlling bandwidth usage.

Once in system memory, the packet is ready to be processed.
The processing performed on a packet consists first of an IP
route lookup, that returns the next hop on which the packet
needs to be forwarded as well as information needed to con-
struct the appropriate link header for the outgoing packet. In
addition to identifying the appropriate next hop for the packet,
the processing also includes classification of the packet in order
to determine the level of service to which it is entitled. Classifi-
cation is in itself a potentially complex function that deserves an
extensive discussion. It is, however, beyond the scope of this pa-
per whose focus is primarily on the mechanisms used to enforce
service differentiation. As a result, we only briefly review the is-
sue of packet classification, and outline the general mechanisms
available in our router platform to support it.

Packet classification requires matching a number of attributes
of the incoming packet, against values whose combination is as-
sociated with rules that determine how to handle the packet. The
complexity of this matching operation depends on the number
of attributes to be matched. For example, classification based
on only the DS byte [4] is straightforward, and one of the mo-
tivations behind the Diff-Serv effort. However, edge devices
are usually required to identify the level of service to which a
packet is entitled on the basis of more extensive attributes such
as source and destination addresses as well as port numbers, pro-
tocol type, ingress and egress interfaces, and even possibly addi-
tional attributes such as time of day. Once this information has
been retrieved, it can be used to select the proper DS byte value
for the packet, which can then be used to classify the packet by
subsequent routers.

It is possible to devise algorithms capable of efficiently per-
forming the full lookups required in edge devices, e.g., see [7],
[8], but they usually require dedicated support (processor or
ASIC) and are unlikely to be feasible in the kind of low end edge
devices we consider. As a result, the approach we rely on for
classification in our router follows the traditional cache-based

Fast Path Cache

pkt in
cache hit

cache
miss

Full IP
route lookup

 QoS
component

pkt out

Diff−Serv
 check

policy query

policy/rule
 database

cache update

stream_id

stream_id

stream_id

Fig. 3. System Structure

solution used to improve forwarding performance in many first
generation routers. In other words, the data path is split between
a fast path and a slow path. For every packet sent on the slow
path, a full lookup is performed into a complete rule database
and used to create an entry specific to this packet (flow1) in the
fast path cache. Entries in the fast path are accessed based on an
exact match on packet attributes, so that the lookup can subse-
quently be performed (for packets from the same flow) using a
simple hash function.

There are many design aspects related to ensuring the effi-
ciency of such an approach, but for the purpose of this paper it
suffices to know that whether obtained from the fast path cache
or the complete rule database searched in the slow path, infor-
mation is retrieved that identifies the appropriate service level
of each packet. This information is in the form of a streamid2

that is passed as a handle to the QoS component responsible for
enforcing service differentiation. The overall structure of the
system is shown in Figure 3, and in the rest of this paper we
concentrate on the operation and performance of the QoS com-
ponent.

III. Q OS COMPONENT AND SERVICE CHARACTERISTICS

The main design criterion behind our QoS components is to
minimize any increase in the path length of the main forwarding
loop, while at the same time allowing basic service guarantees.
The service guarantees we target in our implementation are rela-
tively primitive, and inspired from the base service models cur-
rently being defined in the IETF Differentiated Service group
[2]. These service guarantees are along the two main dimen-
sions of delay and rate guarantees.

Specifically, we first consider a service that aims at emulating
a virtual leased line. Its characteristics are of bounded incom-
ing traffic that needs to be guaranteed a given rate as well as
small latency. This is essentially a service that can be built us-
ing the expedited forwarding (EF) per-hop-behavior (PHB) of
[9], which is akin to the ATM CBR service [10] and shares with
it strict performance guarantees together with an inflexible ser-
vice definition, i.e., no excess traffic. A second service which we

1In this paper, we use the notation flow to denote the set of packets associated with a
specific combination of attributes used to create a cache entry.
2A stream is the unit of resource allocation, and there can be many flows associated with

a given stream and having, therefore, the same streamid.

consider is based on the Assured Forwarding (AF) PHB [11], for
which we provide rate guarantees but with looser delay bounds.
The main feature of this service is that the rate guarantee cor-
responds to a floor guarantee, and a stream is allowed to send
at a higher rate and access idle resources to the extent they are
available.

In our implementation, both services are supported with the
same set of basic mechanisms, but are kept isolated from each
other. As mentioned earlier, our main goal is to enable ser-
vice differentiation with the minimal possible impact on raw
forwarding performance. As a result, complex per packet pro-
cessing operations should be avoided, and this limits our ability
to use sophisticated scheduling algorithms. This is not so much
because of the complexity of the scheduling algorithm itself, al-
though this certainly needs to be considered, but mostly because
of the cost of the sorting operation required each time a packet
is transmitted. This constraint combined with the need to pro-
vide tighter delay guarantees as part of the EF PHB, led us to a
solution where we rely on only two queues. EF and AF packets
are assigned to separate queues, and the two queues are served
using a simple variation of self-clocked fair queueing (SCFQ)
[12]. Because we only have two queues, there is no sorting cost
associated with identifying the next packet to transmit as this
can be achieved through a simple comparison of the transmis-
sion times associated with each queue.

The remaining cost of scheduling is also minimal as the com-
putations performed to update the scheduler are of low com-
plexity. Specifically, the operation of the scheduler arbitrating
between the two queues is as follows. Each queue is assigned a
scheduling weight or rate, which is based on the fraction of link
bandwidth allocated to the service mapped onto it, i.e.,REF

andRAF=BE for the EF and AF (and Best Effort) queues, re-
spectively. The scheduler maintains a system virtual time,TS ,
as well as service tagsTEF andTAF=BE for each queue, and
schedules for transmission a packet from the queue with the
smallest service tag. The service tag of a queue is updated each
time a packet moves to the head of the queue, i.e., after transmis-
sion of the previous packet or when a packet arrives to an empty
queue, and it is set to the system virtual time plus the transmis-
sion time of the new packet at the rate allocated to the queue.
For instance when a packet of sizeLk is transmitted from the
EF queue, we haveTEF = TS + Lk=REF . The system virtual
time TS is also updated to the service tag of the queue being
served each time a new packet transmission starts. The system
virtual time is reset to0 each time both queues are empty. How-
ever, in order to avoid overflow of the system virtual time in
the case of a heavily loaded system, we also update it when the
most significant bit of the smallest service tag is1. Specifically,
whenever this condition is verified, we then set the most signif-
icant bit of both service tags and of the system virtual time to0.
This avoids wrap-around problems when a heavy load prevents
the system from emptying and, therefore, resetting the virtual
system time.

The use of a separate queue for EF packets, ensures that they
see relatively small delays. This is because EF streams are rate
limited, and the EF queue is guaranteed a service rate higher
than the aggregate rate of all incoming streams; queue build-ups

stream_EF1

stream_EF4

stream_EF3

stream_EF2
Shared
Buffers

Shared
Buffers

stream_AF1

stream_AF4

stream_AF3

stream_AF2

stream_AFn

E
F

 Q
U

E
U

E
A

F
/B

E
 Q

U
E

U
E

(Best Effort)

scheduler

Link

Fig. 4. QoS Support for Rate and Delay Guarantees.

are then unlikely to occur under such conditions. As mentioned
before, this is a well understood approach to controlling delay,
e.g., ATM CBR, and one which has been extensively studied in
the context of providing real-time service on packet networks.
In this paper, our goal is to verify that it can provide delay dif-
ferentiation adequate for delay sensitive applications such as IP
telephony, even in the context of a low-end edge device.

The second queue is shared by AF packets, network control
traffic, and, as indicated above, traditional best effort traffic.
This queue is denoted the AF/BE queue in the rest of this pa-
per. Rate guarantees are provided within that queue using the
buffer management method of [13], where a stream is allocated
an amount of buffer proportional to the fraction of link band-
width it is entitled to. The main benefits of this method is that
rate guarantees can be provided to individual streams without
incurring the complexity of a scheduler. Rate guarantees are
provided simply by controlling which packets to accept in the
buffer, which is a check which we need to perform in any case3

and has minimal overhead. The same approach is also used in
the EF queue to protect against potential misbehaving streams,
and we proceed next to describe in more detail the operation of
the buffer management mechanism.

A. Rate Guarantees Through Buffer Management

Each egress interface is configured with (logically as it is only
for accounting purposes) a maximum number of system buffers
that can be queued on it. This buffer pool is then divided into
two separate sub-pools; one for the EF queue and one for the
AF/BE queue. We denote their sizes asBEF andBAF=BE . Rate
guarantees are provided to individual streams within each queue
by allocating a specific amount of buffer to each stream. For
example, the amount of bufferBk allocated to streamk in the
AF queue to guarantee it a minimum rate ofrk is:

Bk = BAF=BE �
rk

RAF=BE

(1)

The main intuition behind the above allocation is that transmis-
sion opportunities and, therefore, rate guarantees are in propor-
tion to the buffer space occupied by a flow. In other words,
if a flow consistently occupies a certain fraction of the buffer

3As illustrated in [13], scheduling without buffer management has little or no effect.

space, it will then get a corresponding fraction of the transmis-
sion opportunities, and hence of the link bandwidth (see [13] for
a rigorous justification of this argument).

Based on the above allocation, the decision to admit or reject
packetj from streamk is a function of the packet lengthLj ,
the current buffer occupancybk, and the buffer allocationBk.
If bk + Lj � Bk, then the packet is admitted, enqueued for
transmission in the corresponding queue (packet transmissions
are FIFO within both the EF and AF/BE queues), and the buffer
occupancybk is incremented byLj . If on the other handbk +
jj > Bk, streamk is already using more than its share of buffers.
Therefore, accepting the new packet should only be done if it
does not affect other streams sharing its queue. This check is
based on two criteria. First and foremost, accepting the packet
should not impact the rate guarantees of other streams. Second,
excess resources should be distributed “fairly” across competing
streams.

To realize these two goals, the buffer pool of each queue is
logically partitioned into allocated buffers and shared buffers.
Allocated buffers are the sum of the buffers allocated to all
streams in the queue, while shared buffers represent the remain-
der obtained by subtracting this amount from the total buffer
pool of the queue. Excess packets can only be accommodated
in shared buffers. Furthermore, to ensure fairness in the us-
age of shared buffers, we use the “holes” method of [13] which
is based on [14]. With this approach, an excess packet is ac-
cepted only if the resulting number of shared buffers occupied
by its stream does not exceed the current number of remain-
ing free shared buffers. For example, assume two streams,s1
and s2, which have been allocated 20% and 50% of the link
bandwidth, and therefore have buffer allocations ofB1 = 0:2B

andB2 = 0:5B, whereB is the total buffer size. The size of
the shared buffers pool is then0:3B, of which each stream can
use at most0:15B. Furthermore, if both streams are each using
0:1B of shared buffers, i.e.,b1 = 0:3B andb2 = 0:5B, nei-
ther of them can then grab an additional shared buffer, although
0:1B shared buffers remain available. There is, therefore, some
inefficiency in the use of shared buffers, but it rapidly dimin-
ishes as the number of streams grows, and is the price paid for
this simple enforcement of fairness.

Once an excess packet is accepted, the buffer occupancy of
its stream is incremented and the shared buffer count is decre-
mented. Buffer counts are also updated at packet transmission
times, together with the shared buffer count whenever the stream
to which the departed packet belonged had a buffer occupancy
above its allocation. The latter ensures that buffers are prefer-
entially released to the shared buffer pool. The overall structure
of the QoS component is shown in Figure 4, which also shows
that in the current implementation the BE traffic is only allowed
to access shared buffers. This is the configuration we assume
in our experiments, but it could easily be modified to provide a
minimum rate guarantee to BE packets.

For the sake of clarity, the above discussion glossed over a
number of details related to the exact update of buffer counts as
well as the impact of discrepancies between byte counts and
packet/buffer counts. In particular, rate guarantees based on
buffer allocation require that buffer accounting be based on the

number of bytes that a stream currently has waiting for trans-
mission. This is because bytes are the units of relevance when it
comes to consumption of link bandwidth. On the other hand, as
was mentioned earlier, implementation limitations in our system
impose a fixed buffer size independent of packet size. This in-
troduces some additional problems when it comes to accounting
for the amount of buffer allocated and used by a stream.

Specifically, an allocation and accounting which assumes that
each buffer corresponds to its byte equivalent in terms of avail-
able storage space, can be overly optimistic. In particular, it
allows rate-wise conformant streams to grab an excessive num-
ber of packet buffers, if they only transmit small packets. This
will in turn deplete the buffer pool, so that packet buffers are
unavailable to other conformant streams. Alternatively, assum-
ing a worst case scenario where each buffer is only used to store
a minimal size packet, is overly pessimistic. It would result in
rejecting requests for rate guarantees because of what would be
(incorrectly) perceived as insufficient buffer space. There is no
ideal solution to this problem, as it requires identifying an ap-
propriate trade-off between the distribution of packet sizes and
the corresponding consumption of packet buffers.

In our implementation, we address this issue through the spec-
ification of a configurable parameter (BUFFSIZE), that defines
the size, byte-wise, that we assign for accounting purpose to
a packet buffer. This parameter is used to translate the packet
buffer pool allocated to each queue, into a corresponding byte
count on which the buffer computations for rate guarantees, i.e.,
equation (1) is based. In addition, BUFFSIZE determines the
minimum packet size for accounting purposes, i.e., packets smaller
than BUFFSIZE are counted as being of size BUFFSIZE. This
is similar to the approach used in the Integrated-Service model
[15], which allows the specification of a “minimum policed unit”
to account for possible per-packet overhead.

For example, this means that if the AS/BE queue is allocated
50 packet buffers, it is considered as having a buffer capacity of
50�BUFF SIZE. As a result, if streamk asks for a rate guaran-
teerk of 20% of the bandwidth allocated to the AF/BE queue,
its buffer allocation isBk = 10 � BUFF SIZE. Given that the
packets of streamk are counted as being of size BUFFSIZE or
larger, streamk is limited to an allocation of at most10 packet
buffers. This means that streamk is guaranteed its transmis-
sion raterk only if sends packets of size BUFFSIZE or more,
and could get a lower throughput if it transmits many packets
of size less than BUFFSIZE. In Section V, we experiment with
the sensitivity of this scheme to the value of BUFFSIZE.

IV. T ESTBEDSETUP AND EXPERIMENTS

In this section, we briefly describe the setup we use to test our
implementation of the service differentiation capabilities out-
lined in the previous section. Our test setup is shown in Fig-
ure 5, and consists of a number of routers (Tim, McKinley,
Rocky, Himalayas, andAlps) interconnected by means of
E1 (� 2 Mbits/sec) links running the PPP protocol. The routers
we use are IBM 2210 (Tim, McKinley, andAlps) and 2216
(Rocky andHimalayas) models as indicated on the figure,
which are running a modified version of their forwarding code
that incorporates our QoS extensions. The main reasons for us-

Rocky

2210

Tim

2210

Himalayas

2216

McKinley

2210

Alps

2216

Sky

Sea

Land

Desert

151.1.2

.1

.2

129.37.2

.1

.3

151.2.3

.1

.3

180.23.2

.1

.2

170.23.4

.2.1

181.37.2
.2

.1

190.23.2

.1 .2

140.23.4

.1

.3
E1

E1

E1

E1

E/N

E/N

E/N

E/N

Fig. 5. Experimental Testbed.

ing these platforms are not only because of the availability of
their forwarding code, but more important because they are rep-
resentative of many edge devices currently in use in IP networks,
i.e., they have a structure similar to that of Figure 2. As one of
our goals is to demonstrate that such edge devices can be eas-
ily upgraded to support QoS capabilities, it is important that we
validate our claims in a realistic setting.

Testing of service guarantees is carried out using a number
of FreeBSD end-systems, which we use as traffic sources (Sea,
Sky, andLand) and sinks (Desert). Traffic is generated by
running MGEN ver. 3.0 [16] on our end-systems, with differ-
ent configuration parameters so as to exercise a range of load
and traffic patterns. In our test cases, we use the PERIODIC
and POISSON settings of MGEN to generate streams of pack-
ets, where packet arrivals are either periodic or follow a Pois-
son distribution (see [16] for details). Periodic arrivals provide
a “cleaner” estimate of our ability to give rate guarantees, i.e.,
they provide a more stable comparison basis, and may be rep-
resentative of some real-time streams. On the other hand, the
traffic patterns generated using the POISSON setting of MGEN
may be somewhat more representative of real traffic.

Measurements to test our QoS guarantees are performed on
the PPP E1 link betweenMcKinley andAlps, i.e., we test
the ability of our QoS enhanced forwarding code to enforce ser-
vice differentiation on interface190.23.2.1 onMcKinley.
We describe below the series of test cases we use, which all
rely on generating a combination of BE, AF, and EF streams
from our three traffic sources, and having them converge on
McKinley’s egress interface190.23.2.1. The end system
Desert serves as a common traffic sink for all streams, and is
used to obtain various performance estimates, e.g., throughput
and end-to-end delay, for the different streams. In particular,
delay estimates are obtained after synchronizing the clocks on
the four end-systems using NTP ver. 3 [17]. The end-system
Desert runs an NTP server to which the clocks of the other
three end-systems are synchronized. Note that in order to ob-
tain reasonable delay estimates (0:5 msec), it is necessary to
leave the system in operation for extended periods of time (over
24 hours) to properly calibrate the drifts between the different
clocks.

A1(L)10 [10]

A2 (S)5 [5]

A3 (M)5 [20]

B1 (L)0 [30]

A4 (M)10 [20]
A5 (L)5 [5]
B2 (S)0 [20]

Ingress Egress

SKY

SEA

LAND

190.23.2.1

180.23.2.2

170.23.4.2

18.37.2.1

McKinley
(a)

E1
link

AF/BE
queue

B3 (M)0 [40]

A6 (S)10 [10]

(b)

A1(L)10 [10]
E1 (S)5 [5]

A3 (M)5 [20]
B1 (L)0 [30]

A4 (M)10 [20]
E2 (L)5 [5]

B2 (S)0 [20]

Ingress Egress

SKY

SEA

LAND

190.23.2.1

180.23.2.2

McKinley

E1
link

B3 (M)0 [40]

A5 (S)10 [10]

 EF
 queue

18.37.2.1
AF/BE
queue

170.23.4.2

Fig. 6. Test Cases.

A. Test Cases

The test cases we run aim at assessing how well our imple-
mentation meets the design goals stated earlier, i.e.,
� Minimize overhead associated with QoS guarantees,
� Ensure basic rate guarantees and service isolation, and
� Provide some level of delay differentiation.
In addition, we also measure sensitivity to several other system
parameters such as the total number of packet buffers available,
and the value chosen for the parameter BUFFSIZE discussed
in Section III.

Our first test is intended to evaluate the relative overhead in-
troduced by our QoS extensions. This is accomplished by in-
serting profiling statements that measure the time spent in vari-
ous processing modules along the data path. The time stamps
are of sub-microsecond granularity and are taken by reading
a real-time clock which is an integral part of the router CPU.
Specifically, we load the instrumented forwarding code on our
test router,McKinley, and measure the time taken for a com-
plete forwarding operation through both the fast and slow paths
(see Figure 3). We also measure the execution time of the spe-
cific instructions corresponding to the QoS decisions and checks
we have added. Using these measurements, we can evaluate the
relative overhead introduced by QoS support, when compared
to basic best-effort forwarding. Results of those measurements
are reported in the next section.

The next series of tests is meant to evaluate the ability of
the implementation to enforce service differentiation. For those
tests, traffic patterns and loads are chosen so that the router is not
processor limited, but instead bandwidth on the E1 link between
McKinley andAlps is the scarce resource. Figure 6 shows
the test scenarios we have used for that purpose. Packet streams
are generated from our traffic sources, and arrive on the three
ingress interfaces atMcKinley before heading to the common
egress interface192.23.2.1. In all tests, the letter B is used
for BE streams, A for AF streams, and E for EF streams. As-
sociated with each stream are two numbers: The first gives the
rate guarantee, if any, for the stream, while the second number,
in brackets, specifies the actual amount of traffic that the flow
generates. The numbers are given in percentage of the egress
link bandwidth. The scenarios shown in Figures 6(a) and 6(b),
include a mixture of streams with and without reservations, and
whose performance will be measured under different conditions.
Streams differ in terms of their packet sizes, the traffic they gen-
erate, and their reservation, if any.

In the first case of Figure 6(a), all the streams with reserva-
tions are of type AF, so that the ability of the scheduler and the

EF queue to provide improved delay performance is not tested.
Instead, the focus is on assessing the influence on both through-
put and service guarantees, of the parameter BUFFSIZE for
streams with different packet sizes. This is accomplished by
varying the value of BUFFSIZE and observing its impact on
the throughput of both AS and BE streams with different packet
sizes. As indicated in the figure, we use streams with three dif-
ferent packet sizes:1000 bytes (L),500 bytes (M), and200
bytes (S). The next test uses again the scenario and streams of
Figure 6(a), but this time varies the size of the packet buffer pool
on interface190.23.2.1. This value is a configurable param-
eter, i.e., a specific portion of the system memory can be allo-
cated to any given interface, and as pointed out in [13] may af-
fect the ability to deliver rate guarantees through buffer manage-
ment. The test is performed assuming a value of BUFFSIZE=
500 bytes, which was found to be a reasonable choice in the
previous experiment. These last two tests also provide useful
information on how successful the simple buffer management
mechanism is at ensuring rate guarantees and redistributing ex-
cess resources across different streams. The discussions of Sec-
tion V highlight these issues, and describe the behavior of the
system when both PERIODIC and POISSON settings are used
by MGEN to generate various traffic patterns.

The last test is intended to verify that using a separate queue
for the EF traffic is an adequate mechanism for providing EF
flows with improved delay guarantees. In order to assess if this
is indeed the case, we modify the scenario of Figure 6(a) and
move two of the AS flows to the EF queue. We then measure
any improvement in delay that they see. This new configuration
is illustrated in Figure 6(b). Note that in agreement with the
earlier assumption regarding EF flows, the two AF flows (A2
and A5) moved to the EF queue are conformant, i.e., the traffic
they generate conforms to the rate they have reserved.

V. EXPERIMENTAL RESULTS

This section reports on the measurement results for the test
cases described in the previous section, and discusses their im-
plications and the conclusions one can draw from them.

A. Relative Overhead

As mentioned earlier, the first goal of our tests was to as-
sess the relative overhead incurred by introducing QoS support.
This involved measuring the path length of both the standard for-
warding path and the QoS enhancements we introduced. When-
ever there was a cache hit (see Figure 3) the average processing
time in the forwarding path was 154�sec/packet, of which the
QoS extensions that we added amounted to a total of 23�sec/
packet. Thus the QoS extensions took around 15% of the to-
tal fast path processing. The slow path on the other hand took
around 419�sec/packet and so the QoS extensions were only
about 5% of the slow path operations. These numbers were
obtained by averaging measurements over multiple traffic pat-
terns and loads, to exercise all possible combinations of QoS
instructions. Variations across scenarios were minimal, so that
the above numbers should be representative of the actual per
packet cost increase. Note that the number obtained for the ba-
sic forwarding code, translates into a maximum throughput of

100

150

200

250

300

350

400

200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Value of BUFF_SIZE (in bytes)

Stream B1
Stream A1
Stream A5

(a) Large packets

200

250

300

350

400

200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Value of BUFF_SIZE (in bytes)

Stream A3
Stream A4
Stream B3

(b) Medium packets

80

100

120

140

160

180

200

220

200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Value of BUFF_SIZE (in bytes)

Stream A2
Stream B2
Stream A6

(c) Small packets

Fig. 7. Sensitivity of Throughput and Rate Guarantees to BUFFSIZE.

around 6500 packets/sec through the edge router. This is a small
number, but representative of the type of low-end device we are
considering. It is important to keep this in mind, in particular in
the context of the comparisons of the next sections.

The main conclusion from the above path length comparison
is that the impact of the slightly greater path length of the QoS
code is very minor. This is not unexpected as significant efforts
were spent in both the design and the implementation, to keep
the overhead of QoS as small as possible. Furthermore, there are
many other components besides the forwarding code, that con-
tribute to limiting the raw throughput through a box. In particu-
lar, the device driver code that is responsible for pushing packets
out on the links, is often a major fraction of the total path length.
As a result, while the added path length due to the QoS code
may translate into a small absolute increase in packet process-
ing time, the relative magnitude of this increase will most likely
be even less noticeable. This was actually verified through a
number of throughput comparisons, which revealed only minor
differences of the order of a few percent between the best-effort
and the QoS enabled forwarding codes.

B. Strength of QoS Support

The previous section indicated that the cost of QoS support,
as implemented in the test router, was relatively small. The next
question is to determine how good QoS support actually is, i.e.,
how effective it is at enforcing service differentiation. As dis-
cussed before, answering this question is the purpose of the sce-
nario shown in Figure 6(a).

B.1 Sensitivity of QoS Support to BUFFSIZE

The first test is targeted at estimating the sensitivity of QoS
support to the value of BUFFSIZE, used to translate packet
buffers into equivalent number of bytes. Because packets smaller
than BUFFSIZE are assumed to be of size BUFFSIZE, we ex-
pect that the value used for this parameter will affect differently
flows with different packet sizes. In order to test this, we run the
scenario of Figure 6(a) for values of BUFFSIZE of 200, 400,
500, 600, 800, and1000 bytes, and the results are reported in
Figure 7 for each type of streams, i.e., streams with large (1000

bytes), medium (500 bytes), and small (200 bytes) packets.
AF streams A1 and A5, which have large packets, are found

to exhibit little sensitivity to changes in the value of BUFFSIZE
(see Figure 7(a)). This is because both are conformant and re-
main so independent of the value of BUFFSIZE, since their
packets are never counted as being larger than they really are.
For flows with large packets, the main disadvantage of small val-
ues of BUFFSIZE, is that the total shared buffer space appears
smaller than it really is, and as a result smaller bursts and/or
amounts of excess traffic can be accommodated. Flows A1 and
A5 being conformant are not really affected by this. On the other
hand, the best effort flow B1 sees a substantial improvement as
BUFF SIZE increases. This increase is caused by the corre-
sponding increase in shared buffers, which are the only buffers
that flow B1 can access.

Figure 7(b) reports similar results for streams with medium
size packets. However, the conclusions are somewhat different
from those for streams with large packet sizes. In particular,
we now observe greater sensitivity of the AF flows to the value
of BUFF SIZE. In particular, we observe variations in through-
put after BUFFSIZE becomes larger than the packet size of the
streams, i.e., when it exceeds500 bytes. We observe this behav-
ior for streams A3 and A4, which experience a slight decrease in
throughput after BUFFSIZE increases beyond500 bytes. This
is because their packets are now being counted as being larger
than what they are, and this limits their ability to access shared
buffers. Note that because both streams generate substantial
amounts of excess traffic, they do rely on shared buffers and ac-
tually achieve throughputs well in excess of their reservations,
which are100kbps and200kbps, respectively. Both streams also
experience an increase in throughput when BUFFSIZE first in-
creases from200 to 400 bytes. This is because such an increase
translates into a larger shared buffer pool, which allows more of
the flows excess traffic to get through. The best effort stream B3
sees a similar trend in throughput variations, but somewhat less
pronounced because it can only access the shared buffers.

Finally, Figure 7(c) shows the impact of varying BUFFSIZE
for streams with small packets. As is expected, such streams get
rapidly penalized as BUFFSIZE increases since all their pack-
ets are counted as being much larger than they are. As a result,
streams that are conformant now appear non-conformant, and
must rely on shared buffers for many of their packets. This
penalty is somewhat compensated by the fact that increasing

80

100

120

140

160

180

200

220

240

60 80 100 120 140

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Total Number of Packet Buffers

Stream B1
Stream A1
Stream A5

(a) Large packets

260

280

300

320

340

360

380

400

60 80 100 120 140

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Total Number of Packet Buffers

Stream A3
Stream A4
Stream B3

(b) Medium packets

60

80

100

120

140

160

180

200

60 80 100 120 140

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Total Number of Packet Buffers

Stream A2
Stream B2
Stream A6

(c) Streams with small packets

Fig. 8. Sensitivity of Throughput and Rate Guarantees to Total Buffer Size (Number of Packet Buffers).

BUFF SIZE correspondingly increases the amount of shared
buffers. However, as can be seen from Figure 7(c), this is not
sufficient to offset the accounting penalty that small packets in-
cur. This penalty is more severe the higher the initial reserva-
tion, as the stream needs to gain access to a correspondingly
larger number of shared buffers in order to maintain its through-
put. This is why stream A2, which has a reservation of only
100kbps, sees a smaller degradation than stream A6 which has
a reservation twice as large.

The main conclusion from this section, is that the setting of
BUFF SIZE needs to be taken into consideration when mak-
ing reservations. Relatively large values, e.g., over500 bytes
appear preferable overall, and are also desirable in order to ac-
commodate a reasonable number of reservations. However, suf-
ficient shared buffers should be kept aside in order to ensure that
streams with small packets are not overly penalized.

B.2 Sensitivity of QoS Support to Total Buffer Size

The other system parameter that is likely to affect perfor-
mance is the the total number of packet buffers available on an
interface. To assess its impact, we conduct a set experiments
similar to those of the previous section. The results are given in
Figure 8, where the total number of packet buffers available is
varied from50 to 150 packet buffers. The results are again plot-
ted separately for streams with large, medium, and small pack-
ets. A value of BUFFSIZE equal to500 bytes was assumed for
all the measurements.

Overall, we see that while there is minimal sensitivity to the
total amount of buffers, and that variations are relatively con-
tained with only small differences for streams with different
packet sizes. Streams with small and medium size packets still
see slightly larger variations than those with large packet sizes,
but they are hardly noticeable. Note that all reserved streams es-
sentially have throughputs at or above their reservations. Even
stream A6 which is penalized by its small packets (each100

bytes packet is counted as being of size BUFFSIZE= 500 bytes)
and relatively large reservation (200kbps), gets close to its reser-
vation (the throughput numbers of Figure 8(c) are only based on
payload, and do not account for the IP/UDP headers).

Another aspect that Figure 8 illustrates, is that the scheme
we use to control access to shared buffers is reasonably suc-

cessful at ensuring fair access to the unreserved link bandwidth.
Specifically, the total level of reservations from flows A1 to A6
is 900kbps, which implies that there is 1,100 kbps of unreserved
bandwidth. There are5 streams that generate excess traffic,
namely streams A3 and A4 as well as the best effort streams B1,
B2, and B3. As a result, we would expect each of them to get
about220 kbps of the unreserved bandwidth. From Figure 8(a),
we see that flow B1 does indeed get a little over220 kbps. Sim-
ilarly, Figure 8(b) shows that flow A3 gets close to320 kbps
(for large number of packet buffers) instead of its reservation of
only 100 kbps, and flow A4 gets nearly400 kbps while it only
reserved200 kbps. Similarly, flow B3 ends up getting close to
220 kbps (again for large buffers). The situation is a little bit
different for flows with small packets because of the impact of
BUFF SIZE, which is set to500 bytes. This means that the
buffer accounting for those flows is as if they were transmit-
ting at2:5 times their actual rate (recall that they use200 bytes
packets). If we account for this overhead, we then see from
Figure 8(c) that the approximately100 kbps that flow B2 gets,
actually correspond to about250 kbps. Again, this is reasonably
close to our target of220 kbps.

We can, therefore, conclude that the buffer allocation and
sharing mechanism is successful at providing rate guarantees
as well as ensuring fair access to excess bandwidth. However,
based on the measurement results of Figure 8, it appears that
having a reasonably large number of packet buffers is useful
when it comes to enforcing fairness. In particular, the results
of Figure 8 show small improvements for streams with small
and medium packet sizes as the total number of packet buffers
increases. This is because more packet buffers translates into
more shared buffers, which streams with small and medium size
packets can more readily benefit from. However, it should be
noted that an increase in the total buffer space does not corre-
spond to an equal increase in shared buffers. This is because
reserved buffers need to be allocated inproportion to the total
buffer space. Increasing the total buffer count, therefore, scales
all buffer reservations accordingly, so that only a small portion
of the additional buffers is actually added to the shared buffers.
although the shared buffer space increases, the larger reserved
buffers combined with the (holes) accounting method used to
control access to shared buffers, actually improves the odds of

80

100

120

140

160

180

200

220

240

260

60 80 100 120 140

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Total Number of Packet Buffers

Stream B1
Stream A1
Stream A5

(a) Large packets

260

280

300

320

340

360

380

400

60 80 100 120 140

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Total Number of Packet Buffers

Stream A3
Stream A4
Stream B3

(b) Medium packets

60

80

100

120

140

160

180

200

60 80 100 120 140

T
hr

ou
gh

pu
t (

in
 k

bp
s)

Total Number of Packet Buffers

Stream A2
Stream B2
Stream A6

(c) Small packets

Fig. 9. Throughput and Rate Guarantees for POISSON Arrivals With Varying Total Buffer Space.

reserved streams to access shared buffers. As a result, best effort
streams actually see a slight decrease in throughput, especially
for small and medium packet sizes. This decrease matches the
corresponding increase that reserved streams see.

Increasing buffer space can in general be beneficial, and one
dimension where we would expect to see some benefits of in-
creasing the total buffer count, is in terms of handling some
amount of burstiness in the streams. In order to estimate this
sensitivity, we repeat the previous tests using the POISSON set-
ting of MGEN instead of the PERIODIC one. In other words,
we use the same packet arrival rates, but the inter-arrival times
are now exponentially distributed instead of being constant. The
value of BUFFSIZE is maintained at500 bytes for these exper-
iments as well. The results of the experiment are shown in Fig-
ure 9, and confirm that for flows with small and medium sized
packets, there is some benefit to increasing the total buffer size.
For flows with large packets, there does not seem to be any sig-
nificant improvement in throughput. This is attributable to the
fact that the larger packet size also implies larger bursts, and
there is still not enough shared buffer left to accommodate these
larger bursts.

The main conclusion from the above series of tests is that
some reasonable amount of shared buffers needs to be available
in order to provide rate guarantees to bursty flows. This is not
unexpected and is a phenomenon that has been documented in
numerous traffic management studies. The buffer management
schemes on which we rely can be easily extended to also ac-
count for burstiness (see [13] for details), and we plan on adding
this capability in the next release. However, such an extension
comes at the price of reserving substantially larger amounts of
buffer, and we want to first experiment further with the use of
shared buffers as the base mechanism for handling burstiness.
Additionally, larger buffers potentially result in larger delays
which can be quite significant for low-speed links.

C. Delay Guarantees

Our last experiment is aimed at verifying our ability to pro-
vide better delay to EF streams. For that purpose, we take two of
the conformant streams of Figure 6(a), streams A2 and A5, and
move them to the EF queue as shown in Figure 6(b) (now flows
E1 and E2). We then compare the delays experienced by the two

streams in each configuration. A value of BUFFSIZE= 500

bytes was used together with a total of100 packet buffers. The
results are reported in Table I, which shows that the use of the
EF queue succeeds at significantly reducing the delays (by a fac-
tor of more than3). Interestingly, stream A2 which had a worse
delay than stream A5 in the AF/BE queue, has a better delay
when the two flows are moved to the EF queue. This is because
of the smaller packet size of stream A2. In the AF/BE queue,
this benefit is not significant as it is multiplexed with many other
streams. However, the difference in packet sizes becomes appar-
ent in the EF queue that only flows A2 and A5 use.

Flow Delay in AF queue Delay in EF queue
A2 180 msec 44 msec
A5 169 msec 49 msec

TABLE I

DELAY COMPARISONBETWEEN AF AND EF QUEUES.

It should be noted that the numbers reported in the table are
for end-to-end delays between the source and destination end
systems. As a result, they include additional contributors than
the routerMcKinley, that we use to provide service differen-
tiation. Overall, while the delays we see for EF streams are not
small, we believe that they are reasonable given the relatively
low speed of the link we used (2Mbps), and they should be ade-
quate for real-time applications.

VI. SUMMARY

In this paper, we have described alightweight software im-
plementation for offering some basic service differentiation ca-
pabilities in the context of simple edge devices. Our goal was
to investigate the ability of such a platform to offer support for
service differentiation and QoS guarantees with minimal impact
on its forwarding performance.

We carried this investigation on a real router platform, where
we developed and tested a set of enhancements aimed at provid-
ing rate guarantees and delay differentiation. These two types
of service guarantees were chosen based on the general direc-
tion of the service proposals currently being discussed in the

IETF Diff-Serv Working Group. The measurements performed
on our implementation showed that support for basic QoS guar-
antees can be achieved in edge devices with minimal impact on
overall performance. In addition, we showed that the buffer
management approach of [13] was indeed capable of provid-
ing reasonably accurate rate guarantees and fair distribution of
excess resources. We also verified that a simple design based
on two queues and a rudimentary SCFQ scheduler, can provide
adequate delay differentiation to meet the requirements of most
real-time applications. There are clearly many aspects and be-
haviors of our implementation that require further investigation.
However, we believe that these initial results provide strong ev-
idences that support for QoS guarantees can be incrementally
deployed on most existing edge devices, and with a minimal
impact on performance. We hope that such evidences can foster
the rapid deployment of QoS capabilities in the Internet.

ACKNOWLEDGMENTS

The authors would like to thank Govindaraj Sampathkumar
and Gaurang Shah for valuable discussions as well as technical
help in the implementation effort.

REFERENCES

[1] R. Braden (Ed.), L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
reSerVation Protocol (RSVP) version 1, functional specification,” Request
For Comments (Proposed Standard) RFC 2205, Internet Engineering Task
Force, September 1997.

[2] Y. Bernet, J. Binder, S. Blake, Mark Carlson, E. Davies, B. Ohlman,
D. Verma, Z. Wang, and W. Weiss, “A framework for differentiated
services,” Internet Draft, draft-ietf-diffserv-framework-
01.txt, November 1998, (Work in Progress).

[3] D. Black, S. Blake, Mark Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” Internet Draft,draft-ietf-
diffserv-arch-02.txt, November 1998, (Work in Progress).

[4] K. Nichols, S. Blake, F. Baker, and D. L. Black, “Definition of the dif-
ferentiated services field (DS field) in the IPv4 and IPv6 headers,” Inter-
net Draft, draft-ietf-diffserv-header-04.txt, November
1998, (Work in Progress).

[5] R. Guérin, S. Blake, and S. Herzog, “Aggregating RSVP-based QoS
requests,” Internet Draft,draft-guerin-aggreg-rsvp-00.txt,
November 1997, (Work in Progress).

[6] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang, K. Nichols, and
M. Speer, “A framework for use of RSVP with Diff-Serv networks,”
Internet Draft,draft-ietf-diffserv-rsvp-01.txt, November
1998, (Work in Progress).

[7] T. V. Lakshman and D. Stiliadis, “High speed policy-based packet for-
warding using efficient multi-dimensional range matching,” inProceed-
ings of SIGCOMM, Vancouver, British Columbia, CANADA, August
1998, (To appear).

[8] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast scalable
algorithms for level four switching,” inProceedings of SIGCOMM, Van-
couver, British Columbia, CANADA, August 1998, (To appear).

[9] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding
PHB,” Internet Draft, draft-ietf-diffserv-phb-ef-01.txt,
November 1998, (Work in Progress).

[10] S. Sathaye, “ATM Forum Traffic Management Specification Version 4.0,”
ATM Forum 95-0013, December 1995.

[11] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding
PHB group,” Internet Draft,draft-ietf-diffserv-af-03.txt,
November 1998, (Work in Progress).

[12] S. J. Golestani, “Network delay analysis of a class of fair queueing algo-
rithms,” IEEE J. Select. Areas in Commun., vol. 13, no. 6, pp. 1057–1070,
August 1995.

[13] R. Guérin, S. Kamat, V. Peris, and R. Rajan, “Scalable QoS provision
through buffer management,” inProceedings of SIGCOMM, Vancouver,
British Columbia, CANADA, August 1998, (To appear).

[14] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds

in a shared memory ATM switch,” inProceedings of INFOCOM, San
Francisco, CA, April 1996, pp. 679–687.

[15] S. Shenker and J. Wroclawski, “General characterization parameters for
integrated service network elements,” Request For Comments (Proposed
Standard) RFC 2215, Internet Engineering Task Force, September 1997.

[16] B. Adamson, “The Naval Research Laboratory (NRL) ”multi-generator”
(MGEN) toolset, ver. 3.0,” Code is available from,ftp://manimac.
itd.nrl.navy.mil/Pub/MGEN/dist, 1998.

[17] D. L. Mills, “Network Time Protocol (version 3): Specification, imple-
mentation, and analysis,” Request For Comments (Draft Standard) RFC
1305, Internet Engineering Task Force, March 1992.

