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Abstract— Bear the provision of Quality of Service (QoS) in
the Internet, Differentiated Service (DiffServ) model has been
proposed as a cost-effective solution. Traffic is classified into
several service classes with different priorities. Thepremium class
traffic has the highest one. The routing algorithm used by the
premium class service has significant effects not only on its own
traffic, but on all other classes of traffic as well. The shortest hop-
count routing scheme used in current Internet turns out to be no
longer sufficient in DiffServ networks.

Based on the hop-by-hop routing mechanism, an interesting
problem is how to find an optimal routing algorithm for premium
class traffic such that (1) it works correctly and efficiently for
premium traffic; and meanwhile (2) it reduces negative influences
to other classes of traffic (such as bandwidth starvation, excessive
delay jitter, etc.). We call this problem the Optimal Premium-class
Routing (OPR) problem which is NP-Complete.

To handle the OPR problem, first, we analyze the strength
and weaknesses of two existing algorithms (Widest-Shortest-Path
algorithm and Bandwidth-inversion Shortest-Path algorithm).
Second, we apply to the OPR problem a novel heuristic algorithm,
called the Enhanced Bandwidth-inversion Shortest-Path (EBSP)
algorithm. We prove theoretically the correctness of the EBSP
algorithm, i.e., it is a consistent and loop-free hop-by-hop routing
algorithm.

Our extensive simulations in different network environments
show clearly that the EBSP algorithm performs better in complex,
heterogeneous networks than the other two hop-by-hop routing
algorithms for the premium class traffic.

I. INTRODUCTION

With exploding volume of traffic and expanding Quality
of Service (QoS) requirements from emerging multimedia
applications, extensive and intensive researches have been
carried out to address varieties of issues in QoS provision
and routing in the Internet. In this paper, we raise an
interesting problem of how to find optimal routing schemes
under both Differential Service (DiffServ) and hop-by-hop IP
routing assumptions. By combining service differentiation
and QoS routing (we call it differentiated routing), the high-
priority traffic, without compromise of their QoS guarantees,
should be transmitted in an efficient manner with low negative
influences to other low-priority traffic. Before presenting our
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work in detail, some background knowledge is introduced in
the following subsections.

A. Hop-by-hop IP routing

In today’s Internet, the hop-count shortest-path (SP)
algorithm is used for IP routing. Although extensive research
has been done in QoS routing, most of them were focused on
connection-oriented scenarios. In this paper, we investigate
a QoS routing problem in the context of hop-by-hop routing.
Hop-by-hop routing means that routing decisions are made
at each node independently and locally, based only on
packets destination addresses and their route computation using
corresponding topology knowledge. The following figure
shows one simple example of hop-by-hop SP routing decisions
made by individual nodes independently.
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Fig. 1. An example of hop-by-hop SP routing: the numbers next to the links
in the original topology denote link capacities, while the labels in the resulting
topology denote “flow” numbers.

The resulting topology, shown in Figure 1, illustrates the
real packet flows1 between each pair of nodes. The numbers
associated with the arcs are the numbers of flows going through
that particular link in that direction.

B. DiffServ model and inter-class effects

In order to provision better end-to-end QoS to applications,
DiffServ scheme has been proposed as a cost-effective solution

1The word “flow” here is different from the definitions in Integrated Service
(IntServ) model or in RSVP. It refers to all packets moving between each pair

of source and destination. For instance, Flow
�!
AB indicates all packets being

transmitted from node A to node B.



[1], [2]. In DiffServ networks, traffic is classified into
three service classes: premium, assured and best-effort. The
premium class traffic has the highest priority in comparison
to other classes of traffic. Originally, the DiffServ scheme is
decoupled from IP routing intentionally, meaning that all traffic
between each source-destination pair follows the same path no
matter which service class it belongs to and DiffServ itself has
no effect on IP routing decisions. Due to premium traffic’s high
priority, this could lead to some problems for the low-priority
traffic when the volume of premium class traffic is high. That is
to say, without taking routing into consideration, the premium
class traffic imposes very negative influences on other classes
of traffic, especially when the network is highly loaded. We
call this the inter-class effects [3]. In [4], the authors presented
simple performance models and analysis for DiffServ schemes.
However, to make a strong case for the negative impacts the
premium class traffic may impose on all other service classes
in DiffServ networks, we have run simulations to measure the
inter-class effects among all three service classes. Our results
are shown in Figure 2.2

As we can see in Figure 2, the premium class traffic has
significant inter-class effects on the assured class and best-effort
class traffic with respect to some important QoS metrics, such
as the packet loss probability (Figure 2(a)) and the packet delay
(Figure 2(b)). When the network is highly loaded (large offered
load �) or the fraction of premium traffic is high (large p), the
traffic with low-priorities experiences severe QoS degradations
(such as higher packet loss rates and larger queueing delays).
Therefore, we must seriously take the inter-class effects into
consideration when we choose routing mechanisms for the
premium class traffic.

C. Routing and bandwidth reservation for premium-class
traffic

In order to provide end-to-end QoS guarantees for the
premium class traffic from node v1 to vn, assuming that the
path hv1; v2; � � � ; vni is used from v1 to vn, certain amount of
bandwidth must be successfully reserved on each link along the
path between these two nodes. If a link (vi; vi+1) is shared by
multiple paths between different pairs of nodes, it has to reserve
certain amount of bandwidth not only for the premium traffic
originated from vi itself, but for all the transient premium traffic
passing through all paths which are sharing the link as well.

Figure 3 depicts a scenario in which node A reserves a
amount of bandwidth to C while B reserves b amount of
bandwidth to C. Since the path (A ! B ! C) is used for

flow
�!
AC according to SP routing, therefore, the link (B;C)

is shared by flow
�!
AC and

��!
BC so that it must reserve totally

(a+b) amount of bandwidth for both flows. As we can imagine,
with the variance of link capacities, the success of a reservation
depends not only on how much bandwidth it tries to reserve
and the capacity (or more precisely, residual bandwidth) of
each link along its path, but on the routing strategy as well.
In this work, for both simplicity and expediency of problem
definition, we assume each node in the topology tries to reserve

2More simulation details and extensive results and measurements are
presented in our technical report [3].

Premium
Assured

Best-effort

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

Offered load (Lambda)

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

Fraction of Premium traffic (p)

0

0.2

0.4

0.6

0.8

1

Loss Probability

(a) Packet Loss Probability

Premium
Assured

Best-effort

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Offered load (Lambda) 0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

Fraction of Premium traffic (p)0

20

40

60

80

100

Packet Delay (in packet)

(b) Packet Delay (in packet)

Fig. 2. Measures of the inter-class effects between all three classes in a
DiffServ network

same amount of bandwidth, say B, to all other nodes for its
premium traffic. This is reasonable when a network is in a setup
phase: Every node tries to pre-reserve a virtual trunk with the
same amount of bandwidth to all other nodes to accommodate
its premium traffic. As we can see, given a network, for each
routing scheme, the maximal value of B (written Bs) is fixed.3

Thus we can measure routing schemes by comparing the values
of Bs they can achieve. The larger Bs, the better the algorithm.
We can understand this from two different perspectives: (1)
The routing scheme with larger Bs is able to accommodate
more premium traffic; (2) In a real network, premium traffic
may only reserve small portion of Bs bandwidth, therefore,
a routing scheme with larger Bs will leave more available or
residual bandwidth to other traffic on those stringent links, thus
reducing inter-class effects and bringing the whole network
into a more load-balanced mode (for example, the chance of

3We will define this maximal value of B, which each routing scheme can
achieve, as the Saturate Bandwidth (Bs) later in this section.
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Fig. 3. An example of bandwidth reservations for premium traffic: Since link
(B;C) is shared by flow ~AC and ~BC , it must reserve (a + b) amount of
bandwidth for both flows.

bandwidth starvation for low-priority traffic may be reduced).
Actually, if we look at the problem from the second perspective,
Bs becomes a load-balancing or fairness index of a network,
which is similar to the max-min fairness in [5], [6], [7].

Together with the assumption of hop-by-hop routing, an
interesting problem is what is the optimal value of Bs (denoted
as Bmax) we can get. This problem is closely related to
the routing algorithm the network is using. Given a specific
routing algorithm R, there exists a maximum value of B which
saturates some link in the network. The link is called the
bottleneck link and the value is denoted as BR

s . Therefore,
Bmax = maxfBR1

s ; BR2

s ; � � � ; BRn
s g, where R1, R2, � � � ,

Rn are all possible loop-free routing algorithms for the given
network. To find the optimal routing algorithm and the value
of Bmax among all of these algorithms is called the Optimal
Premium-class Routing (OPR) problem and it is not a trivial
task. An optimal local solution for a single source may not be
the solution to the whole OPR problem. It is not difficult to
show that this problem is a NP-Complete problem by following
the proof in [6]. Therefore, the SP routing algorithm may not
always be the optimal one. By using the same topology in
Figure 1, but applying a different routing algorithm, Figure
4 illustrates a simple case where SP routing algorithm can
NOT achieve Bmax. From Figure 1 we know that the saturate
bandwidth the SP algorithm can achieve is BRsp

s = 10 with
link (B;C) as the bottleneck link. Figure 4 shows an optimal
routing algorithm, which can achieve Bmax = 50 with (A;B)
as the bottleneck link.4 Thus the problem that this paper
will address turns out to be the finding a heuristic hop-by-hop
routing algorithm R which can achieve a better BR

s .
In order to solve the OPR problem in polynomial time,

heuristic approximation algorithms are needed. In section IV,
we first apply two existing algorithms, the Widest-Shortest-
Path (WSP) algorithm and the Bandwidth-inversion Short-
Path (BSP) algorithm. Both of them are based on the
generalized Dijkstra’s algorithm. After showing both strength
and weaknesses of them, we propose a novel approximation
algorithm, called the Enhanced Bandwidth-inversion Shortest-
Path (EBSP) algorithm. It is also based on the generalized
Dijkstra’s algorithm, therefore, it can run in O(jV j2) time.
However, in terms of the saturate bandwidth, it yields much
better results than the other two existing algorithms.

Extensive simulations in different network scenarios show
that all three approximation algorithms outperform the hop-
count shortest-path algorithm on average. The results also

4Since link (A;B), which has capacity of 100, is shared by two flows
�!
AB

and
��!
CB, the maximum bandwidth each flow can get is 50.
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Fig. 4. An example of an optimal algorithm for the given topology, which can
achieve better saturate bandwidth than the SP algorithm does.

confirm that, in a complicated and heterogeneous network
environment, our EBSP algorithm outperforms the other two
algorithms even more.

The rest of the paper is organized as follows. After the related
work is covered in Section II, Section III presents the system
model and our assumptions. Three heuristic routing algorithms
are discussed and studied in Section IV. Simulations and results
are illustrated in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORK

Extensive researches have been conducted on QoS routing
issues recently. In [8], S. Chen and K. Nahrstedt did a
thorough survey on QoS routing algorithms. But they focused
on network models in virtual circuit mode. Our work in this
paper is based on the hop-by-hop routing scheme. Issues
on hop-by-hop routing algorithms, such as isotonicity, search
of optimal paths, were studied in [9]. The author provided
an elegant algebra basis to study the QoS routing issues in
the Internet. In our paper, although we will borrow some
definitions and theorems from the work in [9], the problem
we will address is totally different. In our work, we will
address the Optimal Premium-class Routing (OPR) problem
- to find an optimal routing algorithm to efficiently service
premium class traffic and reduce negative inter-class effects
simultaneously. In [6], J. Kleinberg addressed an NP-Complete
problem which combined the selecting paths for routing and
allocating bandwidth fairly among connections in the max-min
sense. Following their proof of NP-Completeness, it is easy
to show that our OPR problem is also NP-Complete. But
their work was more connection-oriented with single source.
Our work is based on the whole network topology and tries to
address the OPR problem in a global view. In our work we show
that an optimal local solution for a single source may not be the
solution to the OPR problem. In [10], the authors addressed the
QoS routing from the precomputation perspective and proposed
a hierarchical algorithm to solve the All-Hops Problem. In [11],
the authors discussed path selection algorithms to support QoS
routes in the context of extensions to the OSPF protocol. Again,
both of [10] and [11] focused on QoS routing algorithms for



connections or flows. They did not simultaneously take class-
based and hop-by-hop routing into consideration. To our best
knowledge, our paper is the very first work that raises the OPR
problem and addresses the multi-class routing and inter-class
effects in a global and hop-by-hop point of view.

III. SYSTEM MODEL

We formally define a network model in this section. Based on
this model, we give more formal description of our assumptions
and the problem we will address.

A. Network model and assumptions

Formally, a network is defined as a strongly connected
directed graph G(V;E), where V is the set of nodes (routers
in the Internet) and E is the set of edges (links in the
Internet), with cardinalities jV j and jEj, respectively. Links
are bidirectional with the same capacity in each direction. An
edge from node x to y is represented as (x; y) and there is a
positive bandwidth b(x; y) associated with that edge. There
is also a positive flow number h(x; y), representing the total
number of premium flows moving from x to y. Recall that
all premium packets with the same source and destination
addresses compose a premium flow. More generally, a weight
function is associated with links, denoted as w(x; y) if (x; y) 2
E. The weight function may use any QoS metrics of the
links, such as delay, bandwidth, hop count, etc. By default,
we assume that the weight function is non-negative. A path
p from v1 to vn is denoted as p(v1; vn) (pv1;vn for short)
and p(v1; vn) = hv1; v2; � � � ; vn�1; vni, and it is simple if all
nodes from v1 to vn are distinct. If v1 and vn are the same
node, p(v1; vn) forms a loop. We use p Æ q to denote the
concatenation of p and q. The same way as it is done for links,
a weight function may be applied to paths too: w(p(v1; vn)) =
w(v1; v2)�w(v2; v3)�� � ��w(vn�1; vn), with p(v1; vn) being
a path from v1 to vn and “�” being a binary operation. If the
path p is empty, we have w(p) = �0. Weight values have a total
order, denoted by “�”. w1 � w2 means w1 is lighter (better)
than w2, or w2 is greater (worse) than w1. For example, the
capacity of a path is the minimum link capacity of all the links
that comprise the path. Here w1 � w2 means min(w1; w2).

For the premium class traffic, more specifically, a bandwidth
reservation from v1 to vn through a simple path p(v1; vn) is
successful when and only when the reservation with the same
amount of bandwidth is successfully allocated on every link
along the path. Therefore, each link (v i; vi+1) has to reserve
certain amount of bandwidth not only for the premium traffic
originated from vi itself, but for all the transient traffic passing
through all paths which are sharing the link as well.

The following are our assumptions:
1) Topology information can be obtained at each router

by using some link-state routing protocol such as Open
Shortest-Path First Protocol (OSPF). In this paper, we
do not consider the inaccuracy incurred by delays, which
means the topology information maintained at each router
is accurate, consistent and up-to-date.

2) Hop-by-hop routing is used. Each node independently
makes its own routing decisions based on the topology

it maintains. A routing table is constructed at each node
so that only the destination addresses of incoming packets
are used to get the next-hop information from the table for
those packets.

3) All nodes reserve the same amount of bandwidth to all
other nodes for the premium traffic, denoted as B. For
a given routing scheme R, there exists a maximal value
of admissible B which saturates some link. This value is
called the Saturate Bandwidth of R, and denoted as BR

s .
The link, where BR

s is bounded, is called the bottleneck
link.

4) Queueing delays at each node along a path account for
the most significant part of the whole end-to-end delay for
that path. With the highest priority, premium class traffic
experiences almost no queueing delays [2], [3]. Therefore,
choosing a fairly longer (in terms of hop-count) path from
a source to a destination does not compromise its delay
requirements.

B. Optimal Premium-class Routing (OPR) Problem

In Section I, we have introduced the problem we are going
to address in this paper. Based on the system model and
assumptions stated above, we give a more formal definition to
the OPR problem as follows.

Given a network G(V;E) with bandwidth assignment
b(vi; vj) for any vi; vj 2 V and (vi; vj) 2 E, and the
assumptions, outlined in III-A, the OPR problem is to find
the optimal routing scheme Ropt among all the possible loop-
free hop-by-hop routing schemes on this network (denoted
as R1; R2; � � � ; Rn) so that the optimal premium saturate
bandwidth Bmax is achieved, i.e., B

Ropt

s = Bmax =
maxfBR1

s ; BR2

s ; � � � ; BRn
s g.

As stated in Section II, a very interesting point of the OPR
problem is that, an optimal local solution for a single source
may not be the solution to the whole OPR problem. To address
this problem, we need to consider both routing and bandwidth
reservation in a global view.

C. Some theoretical definitions and theorems

To solve the OPR problem, heuristic approximation
algorithms are needed. Before introducing the heuristic
algorithms, which we design and validate in Section IV, some
fundamental definitions and theorems are presented in this
section. We shall use them later to prove the correctness of
those algorithms.

Since hop-by-hop routing scheme is used, in order to make
the whole network work correctly, the routing algorithm should
be able to guarantee the consistency, defined as follows.

Definition 1: Routability: A network G(V;E) is said to be
routable if every node v 2 V is able to find a simple path to all
the other nodes.

Definition 2: Consistent routing: Given a routable network
G(V;E), a routing scheme R is said to be consistent if (1)
R can find a simple path between every pair of nodes in the
network, i.e., for any two distinct nodes s; t 2 V , R(s; t) is
simple and non-empty, where R(s; t) denotes the path found



by R between s and t; and (2) for any two distinct nodes s; t 2
V , R(s; t) = hs; v1; v2; � � � ; vn; ti implies that R(vi; t) =
hvi; vi+1; � � � ; vn; ti (i.e., R(vi; t) is the sub-path of R(s; t)
between vi and t) for all i = 1; 2; � � � ; n. That is, if node s
makes a decision that the traffic to t will follow a certain path
p, then all the on-path nodes along p should make the same
decisions as s.

Theorem 1: Given a routable network, a consistent hop-by-
hop routing algorithm is loop-free.

PROOF: The proof is straightforward. Given a routable
network G(V;E), every node v 2 V can find a simple path
to every other node. Suppose a source node s chooses the
path hs; v1; � � � ; vn; ti to the destination t, then according to
the definition of consistency, hvi; vi+1; � � � ; vn; ti is the sub-
path from node vi to t, for any i = 1; � � � ; n. By the definition
of a simple path, there is no loop in whole network. �

Note that without consistency, loops may exist in a network
even if the path between every pair of nodes is simple. For
example, if node a chooses the simple path ha; b; ci to node c
while node b chooses the simple path hb; a; ci to c, then there
will be a forwarding loop between a and b in the network,
although the two paths are loop-free individually.

Formal definitions of isotonicity and strict isotonicity were
given in [9], and they state that the order relation between the
weights of any two simple paths is preserved if both of them
are either prefixed or appended by a common, third, simple
path. Since both of them are too strong for finding a consistent
routing scheme, here we give a weaker condition, called left-
isotonicity, which is sufficient to verify a consistent routing
scheme.

Definition 3: Left-isotonicity: Given a weight function, for
any two paths p1 and p2 which are prefixed by a common, third
path p (denoted as p01 = p Æ p1 and p02 = p Æ p2), if w(p1) �
w(p2) implies w(p01) � w(p02), then the weight function is
defined to be left-isotonic. Similarly, ifw(p1) � w(p2) implies
w(p01) � w(p02), then the weight function is defined to be
strictly left-isotonic . If a network G uses a (strictly) left-
isotonic weight function, then G is said to be (strictly) left-
isotonic.

As we can see, the left-isotonicity states that the order
relation between the weights of any two paths is preserved if
both of them are prefixed by a common, third path. However,
the order relation is NOT necessarily preserved if both of them
are appended by a common, third, simple path.

a b c
w ( a, b ) w ( b, c )

d
w ( a, d ) w ( d, b )

Fig. 5. Supposew(a; d) � w(d; b) � w(a; b) andw(a; d) � w(d; b) �
w(b; c) � w(a; b) � w(b; c). Then neither S-lightest path nor L-lightest path
exists betweena andc.

Being weaker than isotonicity, left-isotonicity can not
guarantee the existence of S-lightest or even L-lightest paths
between nodes. To see this, a simple example is shown in

Figure 5. Since the right half of isotonicity does not hold, it is
valid thatw(a; d)�w(d; b) � w(a; b) andw(a; d)�w(d; b)�
w(b; c) � w(a; b) � w(b; c). Thus, pathha; b; ci is the only
lightest path betweena andc, but its sub-pathha; bi is not a
lightest path. Therefore, neither S-lightest path nor L-lightest
path exists betweena andc in this scenario.

However, because we assume that weights are non-negative,
the lightest path always exists between each pair of nodes. In
fact, we will argue later in Theorem 2 that given a strictly left-
isotonic networkG and a routing algorithmR, R is consistent
if it can guarantee tofind the lightest path between every pair
of nodes inG.

Theorem 2: Given a routable networkG(V;E), if the strict
left-isotonicity property holds inG, then a routing algorithm
R is consistent, as long as it can guarantee to alwaysfind the
lightest path between any pair of nodes inG.

PROOF: We prove this theorem by contradiction. Suppose
there are multiple paths between a source nodes 2 V and a
destination nodet 2 V , and by running the algorithmR at s, a
lightest pathp = hs; v1; � � � ; vn; ti has been found. Assume
it is not consistent, i.e.,9i; 1 � i � n, such thatvi is the
first node along the pathp which picks up another different
pathp0 = hvi; v0i+1; � � � ; v

0

j ; ti as the lightest path fromvi to t.
Therefore,w(p0) � w(pi;t), wherepi;t = hvi; vi+1; � � � ; vn; ti
is the sub-path ofp betweenvi andt. Following the strict left-
isotonicity, if we append a common prefix q = hs; v1; � � � ; vii
onto bothp0 and pi;t, the order relation between two paths
should be preserved, i.e.,w((q Æ p0)) � w((q Æ pi;t)), where
“Æ” stands for path concatenation. As we know,q Æ p i;t = p,
that is,w((q Æ p0)) � w(p). Therefore,p is NOT the lightest
path betweens and t, which contradicts our assumption and
completes the proof. �

Since another half of the isotonicity property does not hold,
the routing scheme based on generalized Dijkstra’s algorithm
can NOT guarantee tofind the lightest path between every pair
of source and destination. For example, in the case of Figure
5, by running a generalized Dijkstra’s algorithm at nodea, the
pathha; d; b; ci is found , which is obviously NOT the lightest
path froma to c. Therefore, generalized Dijkstra’s algorithms
are not sufficient to provide consistent routing any more. New
algorithms are needed tofind lightest paths between nodes in
strictly left-isotonic networks.

On the other hand, we observe that the strict left-isotonicity
property does have a very nice feature which is shown in the
following lemma.

Lemma 1: Given a strict left-isotonic networkG(V;E), if a
pathp is the lightest path between two nodess; t 2 V , and
supposep = hs; v1; v2; � � � ; vn; ti, then for all sub-pathspi;t =
hvi; � � � ; vn; ti (where1 � i � n), pi;t is the lightest path from
vi to t.

PROOF: We can prove this lemma by contradict, which is
similar to the proof of Theorem 2. Due to space limitation, we
omit the detailed proof in this paper. �

Following Lemma 1, we have that the lightest path froms to
t must be based on the lightest paths from some intermediate



nodes tot. Therefore, tofind the lightest path betweens andt,
we can start from the destination nodet and perform relaxation
step-by-step backward tos. Based on the above observation,
we present a new algorithm in AlgorithmWN-DIJKSTRA to
find the lightest path between any two given nodess andt in a
strictly left-isotonic network.

WN-DIJKSTRA(G(V;E); w; s; t)
1 for each nodev 2 V
2 do d[v] 1
3 $[v] NIL

4 d[t] 0
5 Q V
6
7 while Q 6= ;
8 do u EXTRACT-MIN(Q)
9 if u = s

10 then EXIT

11 for each v 2 Adj[u]
12 do if w(v; u) � d[u] � d[v]
13 then $[v] u
14 d[v] w(v; u) � d[u]

In Algorithm WN-DIJKSTRA, $[u] denotes the successor
(or next hop node) ofu and d[v] denotes the weight of the
current path fromv to t. The function call EXTRACT-MIN(Q)
is same as the one in the original Dijkstra’s algorithm, which
extracts a node from setQ with the lightest value ofd[v].

It is clear thatWN-DIJKSTRA takesO(jV j2) execution time,
the same as the original Dijkstra’s algorithm.

Theorem 3: (Correctness of WN-Dijkstra’s algorithm) If
we run WN-Dijkstra’s algorithm on a strictly left-isotonic
networkG(V;E) with non-negative weight functionw, source
s and destinationt, then at termination, the lightest path is
found froms to t with d[s] = (weight of the lightest path).

u

x

y

t

p2

p1

path

direct link S

Fig. 6. The proof of Theorem 3: pathp can be decomposed into two sub-paths
p1 andp2.

PROOF: Let Æ(a; b) denote the weight of the lightest path
from a to b. We claim that for each nodeu 2 V , we have
d[u] = Æ(u; t) at the time whenu is extracted fromQ and this
equality is maintained thereafter. Sinces 2 V , this claim holds
for s, too. For convenience, we letS be the set of nodes that are
extracted fromQ beforeu.

We shall show this claim by contradiction. Letu be thefirst
node for whichd[u] 6= Æ(u; t) when it is extracted fromQ.
Clearly, u 6= t becauset is the first node extracted fromQ
andd[t] = Æ(t; t) = �0 when it is extracted fromQ. Because
u 6= t, we haveS 6= ; just beforeu is extracted fromQ. Since

the network is routable, there must be some path fromu to t.
Thus there must be a lightest pathp from u to t, for the weight
function is non-negative. Without loss of generality, we assume
thatx is thefirst node alongp such thatx 2 (V � S) (i.e.,x is
thefirst node alongp which has not been extracted fromQ yet),
and lety 2 S bex’s direct successor, i.e.,y = $[x]. Thenp
can be decomposed into two sub-pathsp1 andp2 atx, as shown
in Figure 6.

Now we show thatd[x] = Æ(x; t) when it is extracted from
Q. Becauseu is thefirst node for whichd[u] 6= Æ(u; t) when
it is extracted fromQ, d[y] = Æ(y; t) wheny is extracted from
Q. Sincep is the lightest path fromu to t, andG is strictly
left-isotonic, by Lemma 1, we have that the sub-path fromx to
t is a lightest path and thusd[x] = w(x; y)� d[y] = w(x; y)�
Æ(y; t) = Æ(x; t).

Because the weight function is non-negative, clearly we have
Æ(x; t) � Æ(u; t), and thus

d[x] = Æ(x; t) � Æ(u; t) � d[u] (1)

However, becausex is still in Q whenu is extracted fromQ,
we haved[u] � d[x]. By Equation 1, the following equations
hold:

d[x] = Æ(x; t) = Æ(u; t) = d[u]

Therefore,d[u] = Æ(u; t), which contradicts our choice ofu.
Then, we conclude that for any nodes 2 V , when it is extracted
fromQ, d[s] = Æ(s; t), and the path found and stored in$[s] is
the lightest path froms to t. �

By Theorem 2 and Theorem 3, theWN-DIJKSTRA algorithm
provides aconsistent routing.

In the next section (Section IV), we will provide three
heuristic algorithms to address the OPR problem. Their
correctness is proven based on the definitions and theorems
introduced above.

IV. ROUTING ALGORITHMS FORPREMIUM CLASS

TRAFFIC

The OPR problem we defined in Section III turns out to be
very difficult to find an optimal solution in polynomial time.
Therefore, in this section, we introduce two existing heuristic
hop-by-hop routing algorithms that are based on the generalized
Dijkstra’s algorithm, as well as one novel algorithm based on
the WN-Dijkstra’s algorithm (Section III). All of them can run
in O(jV j2) [12].

A. Widest-Shortest-Path Algorithm (WSP)

The WSP algorithm is the simplest heuristic algorithm which
can achieve a better saturate bandwidth (B

Rwsp

s ) than the basic
hop-count shortest-path (SP) algorithm. When a tie occurs, the
basic SP algorithm simply chooses the node with the smallest
identifier to break the tie. However, the WSP always chooses
the widest path among the set of shortest paths between any
pair of source and destination. The WSP has been well-studied
in [9], [13]. Although it does not have astrict isotonicity, the
isotonicity still holds. Therefore, by using the Dijkstra-old-
touch-first (Dijkstra-OTF) algorithm proposed in [9], we can



guarantee that WSPfinds a loop-free lexicographic-lightest (L-
lightest) path from a source to a destination.

The simulation results (given in Section V) show that, on
average, the WSP algorithm outperforms the SP algorithm.
However, since the WSP only chooses a path from those
“shortest” paths (in the sense of hop-count) between two nodes,
the gain is limited.

B. Bandwidth-inversion Shortest-Path Algorithm (BSP)

In order to overcome the WSP’s limitation of performance
gain, we need to choose a“best” path from a broader range.
Therefore, the BSP algorithm is introduced. The BSP algorithm
was studied and called the“Shortest-distance path algorithm” in
[13]. It was used in a call-based or connection-oriented network
(such as the ATM network).

The BSP is basically a shortest-path algorithm with the
distance or weight function defined as

w(vi; vj) =
1

bi;j

and

w(phv1; v2; � � � ; vni) =
n�1X

i=1

1

bi;i+1

where bi;j = b(vi; vj) is the bandwidth of link(vi; vj).
Since the weight function is additive and the strict isotonicity
property holds, the BSP algorithm with this weight function
can guarantee that packets are transmitted through the lightest
path between any pair of source and destination without loop
[9]. Therefore, it can be used as a hop-by-hop routing algorithm
as well. If there are more than one lightest paths between the
source and destination, the path with the least hop count is
selected.

Although generally BSP can achieve much better saturate
bandwidth (BRbsp

s ) than SP or WSP (the simulation results will
be shown in Section V), it is not verystable, meaning that the
chance of producing a worseBRbsp

s than the SP is high. For
example, in Figure 1, if we change theb(A;C) to 1000 and
b(B;C) to 90, thenBRbsp

s = 50 andBRsp

s = 90, that is, the
BSP gets even worse saturate bandwidth than the SP does.

V1 V2 V3 VnVn−1
(n−1)

Fig. 7. Links in a longer path have to handle more flows, therefore,Bs
decreases: for example, according to the consistency of hop-by-hop routing,
link (vn�1; vn) has to hold(n � 1) flows: ~v1vn; ~v2vn; � � � ; ~vn�1vn. The
longer the path is, the smaller aBs will be.

The reason behind the failure of BSP is that it prefers a wider
path too much. In fact, being related to both the link capacities
along the path and the number of flows the path is taking, there
are two constraints behind the OPR problem: (1) On the one
hand, a wider path may achieve higher saturate bandwidth; (2)
On the other hand, when the wider path grows longer, according
to the consistent routing policy, more nodes, hence more flows

will have to share the same path, resulting in a decrease of the
saturate bandwidth.5 This phenomenon is illustrated in Figure
7. Therefore, in order to prevent putting too many flows onto
a wide path, the length of the chosen path should be carefully
limited. Intuitively, a “penalty” associated with the hop count of
a path can be used to prevent that it becomes too long. Hence,
a novel algorithm based on the BSP is introduced as follows.

C. Enhanced Bandwidth-inversion Shortest-Path Algorithm
(EBSP)

Intuitively, the introduction of a “penalty” helps to prevent
a path becoming too long. The value of such “penalty” is
related to hop count value. In order to guarantee the routing
consistency, the new weight function with “penalty” should
hold the strict left-isotonicity property as well (Section III).
The weight function for a pathp(v1; vn) = hv1; v2; � � � ; vni
is defined as follows.

w(p) =

n�1X

i=1

2i�1

bi;i+1
(2)

For any two pathsp1 and p2, w(p1) � w(p2) if and only
if w(p1) < w(p2). A modified version of WN-Dijkstra’s
algorithm is used to find the lightest path between two nodes
in terms of this new weight function.
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...b1 b2 b3

b0

b’0

b’1 b’2 b’3

b(i−1)

b’ (j−1)
b’ j

bi

Fig. 8. The topology used to prove the left-isotonicity of the weight function
in Equation 2. Originally, there are two paths between node S and D: p1 =
hS; v1

1
; v1

2
; � � � ; v1i ; Di and p2 = hS; v2

1
; v2

2
; � � � ; v2j ; Di. we suppose that

p1 is lighter than p2 .

Notice that the new weight function is no longer static. It
dynamically changes with the hop count value. We can prove
that this weight function is strictly left-isotonic, though it is
not isotonic. Suppose we have two paths from node S to D:
p1 = hS; v11 ; v

1
2 ; � � � ; v

1
i ; Di and p2 = hS; v21 ; v

2
2 ; � � � ; v

2
j ; Di,

as shown in Figure 8. For convenience, let S = v 10 = v20 and
D = v1i+1 = v2j+1. According to the definition in Equation 2,
we have

w(p1) =

iX

m=0

2m

bm

and

w(p2) =

jX

m=0

2m

b0m

5According to the hop-by-hop routing assumption, every node makes
routing decisions independently without any coordination between each other.
Therefore, taking only the bandwidth into consideration, we may experience
the following behavior: if one node chooses a wider link, then other nodes are
very likely to choose the same link too, resulting in the decrease of Bs . This
confirms our earlier statement that a local optimal solution for a single source
node may not necessarily be the global optimal solution to the OPR problem.



where bm = b(v1m; v
1
m+1) and b0m = b(v2m; v

2
m+1). Without

loss of generality, we suppose that p1 is lighter than p2, i.e.,
w(p1) � w(p2). Then we have

iX

m=0

2m

bm
<

jX

m=0

2m

b0m
(3)
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Fig. 9. Topology used to prove the left-isotonicity of the weight function in
Equation 2. After a common prefix is added to the original topology (Figure
8) at node S, we can prove that p0

1
= hA; � � � ; S; v1

1
; v1

2
; � � � ; v1i ;Di is

still lighter than p0
2
= hA; � � � ; S; v2

1
; v2

2
; � � � ; v2j ; Di, that is, the strict left-

isotonicity holds.

Now a common prefix q = hA; � � � ; Si is added to node S
as shown in Figure 9. Suppose there are k hops from node A to
S, then the weights for the two augmented paths from A to D,
p01 = q Æp1 = hA; � � � ; S; v11 ; v

1
2 ; � � � ; v

1
i ; Di and p02 = q Æp2 =

hA; � � � ; S; v21 ; v
2
2 ; � � � ; v

2
j ; Di, are

w(p01) = w(A;S) +

iX

m=0

2m+k

bm
= w(A;S) + 2k

iX

m=0

2m

bm

and

w(p02) = w(A;S) +

jX

m=0

2m+k

b0m
= w(A;S) + 2k

jX

m=0

2m

b0m

respectively. Following the inequality in Equation 3, we can
easily draw the conclusion that w(p01) � w(p02). Therefore, by
Definition 3, the strict left-isotonicity holds.

Following Theorem 2 and Theorem 3, an enhanced WN-
Dijkstra’s algorithm can be used to produce a consistent routing
scheme for a network based on the new weight function given
in Equation 2. We give the detailed description of this enhanced
WN-Dijkstra’s algorithm as follows, which is called WN-
Dijkstra-EBSP.

WN-DIJKSTRA-EBSP(G(V;E); b; s; t)
1 for each node v 2 V
2 do d[v] 1
3 $[v] NIL

4 Q V
5 d[t] 0
6
7 while Q 6= ;
8 do u EXTRACT-MIN(Q)
9 if u = s

10 then EXIT

11 for each v 2 Adj[u]
12 do if 2� d[u] + 1=b(v; u) < d[v]
13 then $[v] u
14 d[v] 2� d[u] + 1=b(v; u)

The asymptotic execution time of WN-DIJKSTRA-EBSP is
O(jV j2), which is the same as the original Dijkstra’s algorithm.
Notice that we use the new weight function in Equation 2 to
compute the weight for a path in line 12 and 14, which depends
on the current node’s hop count value and the bandwidth of the
associated link.

By taking both the hop count and bandwidth into
consideration, we expect that the EBSP algorithm can
outperform the SP with respect to the saturate bandwidth (i.e.,
B
Rebsp
s should be better than B

Rsp

s ), meanwhile, it should be
more stable than BSP. We will show in Section V that the
simulation results confirm our expectations very well.

V. SIMULATIONS AND RESULTS

In the previous section, we introduced three heuristic
algorithms to solve the OPR problem. Their performance
depends on the network topology. To better understand the
relation between them, and to show the advantage of our new
EBSP algorithm, extensive simulations have been carried out.
In this section, we present the simulations and results.

A. Simulation Model

We design a topology generator to automatically generate
topologies. The parameters we use for modeling topologies
are: (1) Number of nodes N ; (2) Maximum degree of each
node D; and (3) Variance index of link capacities Cvar. Given
a specific value of D, we generate a random number within
[1; D] for each node as its degree. The destinations for each
node are also randomly generated. We normalize the base link
capacity to 100 units and quantize Cvar into 10 levels, from
1 to 10. For each link, we assign its capacity based on the
value of Cvar . For example, if Cvar = c; c 2 [1; 10], we
generate a random number between [100; 100c] and assign it
to a link as its capacity. The larger Cvar is, the greater variance
of link capacities. In this way, we can adjust the variance of
link capacities very easily.

Since it is very difficult to find the optimal saturate bandwidth
Bmax for each topology, therefore, comparisons amongB Rwsp

s ,
B
Rbsp
s , B

Rebsp
s and Bmax become infeasible. In order to

quantify the performance of the three algorithms and do
comparisons, we use the SP algorithm (i.e., basic Dijkstra’s
algorithm on hop count) as our base. Given a randomly
generated topology,6 we first run the SP algorithm at each
node of it so that the saturate bandwidth B

Rsp
s is obtained.

Then, the three heuristic algorithms, the WSP, BSP and EBSP,
are executed on the same topology individually, and the
saturate bandwidths, BRwsp

s , BRbsp
s , and BRebsp

s are obtained,
respectively. We compare these three values with B

Rsp

s to
observe how much benefit we can gain by using different
algorithms. For each configuration (N;D;Cvar), we run the
simulation 10000 times (i.e., we randomly generate 10000
different topologies with the same configurations in terms ofN ,

6Since the topology is randomly-generated, it may be un-routable at all.
Before we run routing algorithms on it, its routability is checked. If it is not
routable, we just simply drop it.



D and Cvar, and run simulations on them). Finally, different
configurations are tested and simulation results are collected.

We evaluate the performance of a particular algorithm R

by using two metrics: (1) “Speedup” - defined as BR
s =B

Rsp
s

- the larger, the better; and (2) “Stability” - measured as the
total number of times when the particular algorithm yields a
worse BR

s than the SP does (i.e., when BR
s < B

Rsp
s ) - the

smaller this number, the better stability. By analyzing the
simulation results in the next subsection, we can observe some
interesting relations between performance of the algorithms and
configurations of topologies.

B. Simulation Results and Analysis

We list the simulation results in the following table (Table
I), where “# of missing” means: how many times the particular
algorithm produced worse saturate bandwidth values (BR

s ) than
the SP algorithm did. The smaller this number is, the more
stable the algorithm is.

Each “speedup” number in Table I is the average number on
10000 samples, while each “# of missing” number is the total
number out of 10000 samples.

By observing the detailed results in Table I, we can
analyze and find some interesting relations and trends between
performance of algorithms and configurations of topologies.

General comparisons among WSP, BSP and EBSP: In
general, the WSP is the most stable one among the three
algorithms in terms of “number of missing” and the BSP is
the least stable one. However, as far as the saturate bandwidth
“speedup” is concerned, WSP does not gain much generally.
For EBSP algorithm, it becomes more stable and yields much
larger speedup values (in an order of magnitude) when N
increases and/or D increases. The EBSP is also always much
more stable than the BSP. For BSP, it has the similar trends
as the EBSP in the sense of saturate bandwidth, but it always
suffers the worst stability.

Performance trends of the algorithms w.r.t. Cvar: For
both BSP and EBSP algorithms, there exists a significant and
consistent relation between their performance and the variance
of link capacities Cvar . When the variance of link capacities
increases, whatever values N and D have, both algorithms
yield better speedup and become more stable. Especially, when
topology is complicated (large N and D), if Cvar increases
from 2 to 10, both algorithms get large speedup values.
However, the performance of WSP is not that straightforward.
Given a fixed N , for small D’s, WSP gets larger speedup when
Cvar increases. (For example, when N = 20; D = 4; 8, its
speedup increases with Cvar ’s increase.) But for large D’s, we
observe the reverse trends. For example, when N = 20; D =
12; 16, its speedup decreases with Cvar ’s increase!

Comparisons of the three algorithms w.r.t. topology
configurations: If we compare the three algorithms when the
capacity variance is small, surprisingly, we find that WSP
performance is best in terms of both speedup and stability. But
for large capacity variances, EBSP is the best algorithm among
the three ones - it has large speedup values while it keeps fairly

stable, especially in case of complicated topologies. Therefore,
we can draw a conclusion that WSP is more suitable for
small capacity variance networks (i.e., networks with similar
links) and EBSP is more suitable for networks with large
capacity variances (especially those large networks with a lot of
heterogeneous links). There is no significant advantage of BSP.
Although it yields slightly larger speedup values than EBSP
when N and D is small, it suffers poor stability.

Performance trends w.r.t. average degree D: If we fix the
value of N and Cvar , by changing the values of D, we can
observe the same trends for all three algorithms: When D
increases, all three algorithms first yield larger speedup values,
but after a certain point, all of them become decreasing. The
reason behind this phenomenon might be: at the beginning,
when D is very small, the topology has very low connectivity,
meaning that there are very few optional routes between nodes
for the routing algorithms to choose. Therefore, all three
algorithms yield almost the same results as SP does - resulting
in very small speedup values. As D increases, there are
more and more optional routes between nodes for the routing
algorithms to choose. Thus, it is more and more likely for
all of them to find better routes. So the speedup values
increase. But after a certain turning point (different algorithms
may have different turning points), the topology becomes so
connected (consider a fully-connected topology) that the hop-
count shortest paths are preferred. Therefore, speedup values
for all three algorithms start to decrease.

Brief conclusion: In summary, for a simple, homogeneous
network, WSP should be used for the premium-class routing
since it is more stable. While for a complicated, heterogeneous
network, our EBSP is absolutely preferred since it yields much
higher saturate bandwidth speedup as well as very strong
stability property.

VI. CONCLUSION

In order to service premium traffic efficiently while keeping
its negative inter-class effects low, the premium class routing
algorithm must be carefully chosen. In this paper, we
argued that the choice of the optimal premium class routing
algorithm leads to the Optimal Premium-class Routing (OPR)
problem. We have analyzed two existing routing algorithms
(the Widest-Shortest-Path (WSP) algorithm and the Bandwidth-
inversion Shortest-Path (BSP) algorithm) and designed the
novel Enhanced Bandwidth-inversion Shortest-Path (EBSP)
algorithm to compare and study the tradeoffs of these different
solutions for the OPR problem. Our simulation results showed
that on average all three routing algorithms outperformed the
basic hop-count shortest-path (SP) algorithm. Furthermore,
for simple, homogeneous networks, the WSP algorithm
outperformed all other algorithms. However, the EBSP
algorithm significantly outperformed all other algorithms in
complex, heterogeneous networks. As the DiffServ networks
are becoming more and more heterogeneous and complex, our
results strongly indicate that the EBSP routing algorithm is a
strong candidate for routing of premium class traffic in DiffServ
networks.



WSP BSP EBSP
Topology Config. B

Rwsp
s =B

Rsp
s # of Missing B

Rbsp
s =B

Rsp
s # of Missing B

Rebsp
s =B

Rsp
s # of Missing

(On Average) (Total) (On Average) (Total) (On Average) (Total)
D = Cvar = 2 1.0 0 1.01089 372 1.005136 0

N = 1 Cvar = 10 1.0 0 1.5258 543 1.521771 143
3 D = Cvar = 2 1.0 0 1.023388 808 1.009331 0

2 Cvar = 10 1.0 0 2.06108 1121 2.052849 292
D = Cvar = 2 1.206707 502 1.252498 949 1.170699 837
2 Cvar = 10 1.430197 113 3.221248 369 2.809879 323

D = Cvar = 2 1.700889 124 1.584275 461 1.604896 275
4 Cvar = 10 2.372344 23 6.612975 120 6.596185 80

N = D = Cvar = 2 2.249493 45 1.904825 219 2.035591 121
12 6 Cvar = 10 2.434147 7 8.552396 25 8.994029 17

D = Cvar = 2 2.412555 9 1.827042 432 2.152137 61
8 Cvar = 10 1.758308 0 8.876251 0 9.794656 0

D = Cvar = 2 1.55669 17 1.109787 4546 1.527184 640
10 Cvar = 10 1.12632 0 7.611648 0 8.771335 0
D = Cvar = 2 1.719031 66 1.63303 210 1.628082 137
4 Cvar = 10 2.467735 7 7.733295 44 7.54983 27

D = Cvar = 2 2.676883 7 2.272738 58 2.440101 26
N = 8 Cvar = 10 3.868552 1 12.54002 4 13.67351 1
20 D = Cvar = 2 3.384082 0 2.632563 5 2.948973 2

12 Cvar = 10 2.779093 0 14.22995 0 15.85364 0
D = Cvar = 2 2.994321 0 1.774265 467 2.43386 18
16 Cvar = 10 1.501094 0 10.73456 0 12.40077 0
D = Cvar = 2 1.960256 19 1.789388 120 1.832777 49
5 Cvar = 10 2.917606 2 10.37922 18 10.46364 9

D = Cvar = 2 3.034881 2 2.508176 23 2.764518 3
N = 10 Cvar = 10 5.63361 0 16.60106 1 18.72418 1
30 D = Cvar = 2 4.455547 0 3.226183 0 3.69619 0

20 Cvar = 10 3.363771 0 20.11695 0 22.00206 0
D = Cvar = 2 3.762717 0 1.953244 148 2.777876 4
25 Cvar = 10 1.672655 0 12.10766 0 13.97969 0

TABLE I
SIMULATION RESULTS WITH RESPECT TO DIFFERENT TOPOLOGY CONFIGURATIONS
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